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1 Introduction

1.1 Research Objective

The objective of this qualitative study is to examine and document how introductory

physics students treat the uncertainty of measurements.  In meeting this objective, the

conceptions and practices of physics instructors (primarily graduate teaching assistants) are

also examined in order to define a reference standard to which the student practices may be

compared.

1.2 Research Questions

This study is guided by the following questions:

1. What are the common conceptions, practices, or "Facets" (Minstrell 1992)

demonstrated by introductory physics students regarding measurement uncertainty

and error analysis?

2. How do students treat the uncertainty in measurements differently than experts

(graduate students, professors, and authors of reference materials)?

3. Why do students believe what they do about measurement uncertainty? (Answering

this question helps facilitate the development of more effective curricular materials

for teaching measurement uncertainty.)
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1.3 Motivation for this Research

Despite the fact that extensive research efforts have been made in recent years to

better understand how students learn physics, very few studies have addressed students'

understanding of the inherent uncertainty associated with physical measurements (Sere,

Journeaux et al. 1993; Lubben and Millar 1996; Allie, Buffler et al. 1998; Soh, Fairbrother

et al. 1998). Of these studies, none have made a comprehensive effort to examine the scope

of this concept, even though it is a critical component of all scientific investigations.  As

nearly all physics lab instructors can attest, introductory students (and even advanced

students) often have difficulty understanding and analyzing the uncertainties in their

measurements (see Chapter 2).  Therefore, it seems prudent to investigate these difficulties

and try to understand the cause for confusion and misunderstanding so that instruction on

this subject can be improved.  This subject is also worthy of investigation because it has

many diverse applications in a variety of disciplines as explained in the following sections.

1.4 The Nature of Uncertainty in Measurement

Measurement uncertainty is an intrinsic part of all scientific investigations.  Science

is based on the systematic pursuit of knowledge involving the collection of data through

observation and experiment, and the formulation and testing of hypotheses (Merriam-

Webster 2000). The laws of nature as we know them have been developed and tested from

years of scientific investigation.  The process of scientific inquiry naturally leads to the

important questions about how well an empirical result is known, whether or not the result

agrees with a hypothesis or theoretical prediction, and whether the result can be verified by

other researchers.  In order to answer these basic questions, the uncertainty of the measured



3

result must be estimated and quantified to indicate the degree of confidence associated with

the measurement.  Only after the uncertainty of an experimental result is established can a

reasonable conclusion be made about how the result compares with a theoretical prediction

or some other experimental value.  Therefore, the process of determining the uncertainty of

measurements (commonly called error analysis) is fundamental to all scientific

investigations.

Physics is the study of matter and energy interactions and is the most fundamental of

the natural sciences. Nearly all of the physics principles taught to students are based on

experimentation, and every experiment requires measurements that are inherently uncertain.

Introductory physics laboratory courses provide a natural opportunity for students to learn

the fundamental practices of experimentation and data analysis.  As will be shown in this

dissertation, these practices are not easy for students to master, but the effort to do so is

worthwhile since the concepts have important applications in a variety of fields beyond

physics.

The following quote summarizes the importance of improving instruction in the area

of error analysis:

It has been a considerable handicap to many experimenters that their formal scientific
training has left them unequipped to deal with the common situation in which
experimental error cannot be safely ignored.  Not only is awareness of the possible
effects of experimental error essential in the analysis of data, but also its influence is a
paramount consideration in planning the generation of data, that is, in the design of
experiments.  Therefore, to have a sound base on which to build practical techniques
for the design and analysis of experiments, some elementary understanding of
experimental error and of associated probability theory is essential (Box, 1978, p.24).
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1.5 Student Difficulties with Measurement Uncertainty

The primary reason for investigating student treatment of measurement uncertainty is

that there is widespread anecdotal evidence from physics teachers that students have

difficulty analyzing measurement errors.  A goal of this research is to determine how

widespread these misunderstandings really are, and whether the situation is as bad as

teachers believe.  Below are some common student behaviors that have been observed by

the author and other physics instructors (a more comprehensive list can be found in Chapter

2):

• Students often fail to consider the uncertainty in measured values when evaluating
whether two results are in agreement.

• Students apply rules of significant figures without a firm conceptual understanding of
why they are used.

• Students frequently report results with more (in)significant figures than can be
justified.

• Student comments indicate limited thought about the nature of uncertainty:
“We used a computer to analyze our data so there was no error in our result.”
“The primary source of error in our experiment was human error.”

Concern about these behaviors contributed to the motivation for this research.  A

more extensive investigation of the student learning objectives targeted by this study is

presented in Chapter 2.

1.6 Applications in Physics

Precision measurements are inherently linked to physics, especially in experiments

designed to push the limits of what we know about the physical world. This is the reason

that the National Institute of Standards and Technology (NIST) has a physics division that is

responsible in part for continuing to measure and report the fundamental physical constants

to the greatest precision possible.  NIST is a federal agency of the U.S. Department of
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Commerce and is responsible for communicating with industry to develop and apply

technology, measurements, and standards.  To facilitate this communication, NIST has

published guidelines for evaluating and reporting the uncertainty of measurements (Taylor

and Kuyatt 1994).

1.7 Applications Beyond Physics

One reason for investigating student understanding of measurement uncertainty is

that it is a truly fundamental concept that has applications in many diverse scientific fields

including metrology (the study of measurements), statistics, physics, engineering, chemistry,

economics, and even the social sciences.  The use of scientific data is certainly not limited to

researchers, laboratory technicians, and engineers.  The general public is also responsible for

interpreting scientific reports and making decisions based on the results of experimental

studies.  Unfortunately, many members of society are numerically illiterate and do not have

the skills necessary to make sound decisions despite all the quantitative data that are

available to them.  In his book Innumeracy, John Paulos gives numerous examples of

situations where people often do not use or understand numerical data and the consequences

this misunderstanding can have on their lives (Paulos 1988).  Students who learn data

analysis skills (in a physics lab or by some other means) should be better prepared to make

sense of numerical data they encounter in both their careers and personal lives.  This

viewpoint is supported by an excerpt taken from a 1997 paper presented by Maryanne Fox

at a symposium in Washington, D.C., held by the Center for Science, Mathematics, and

Engineering Education to reflect on educational reform during the past 40 years since

Sputnik:
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As scientists, mathematicians, and engineers, many of us are completely astonished
by our students’ inability to understand scale. One of my colleagues asked his
freshman students this fall to estimate the diameter of the earth. From a class of
several hundred, he got two responses: 100 miles and 1.41 million miles. The first
student had just arrived in Austin from Waco, a distance of about 100 miles, and
perhaps the distance from home to college did represent the ends of the earth to him.
But the second one? How can one be so wrong with such precision? How
bewildering living every day within nature must be to such students?(Fox 1997)

Every measured value has some degree of uncertainty, and while most circumstances

do not warrant an extensive error analysis, there are numerous situations beyond the field of

physics where a reasonably accurate determination of the uncertainty is important for

making critical decisions. Several important examples are provided in the following

sections.

1.7.1 Legal Decisions

Many important legal decisions depend on the accuracy of scientific data that is

inherently subject to uncertainty.  Consequently, the Federal Rules of Evidence for court

testimony by experts and technical data were revised in 1993 to include the following

points: (Bernstein 1993).

1)  The court should determine whether the theory or technique in question can be (or
has been) tested.

2)  Peer review is an important consideration.
3)  The known or potential rate of error of the technique should be determined, as

should the existence and maintenance of standards controlling the technique's
operation.

The Federal Rules of Evidence place the responsibility on attorneys to validate the accuracy

of any scientific evidence presented in court cases.  However, jurors should also have a

reasonable understanding of the nature of errors associated with empirical data so that they
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can make well-educated decisions, especially since their judgments will affect the future of

other human beings.

1.7.2 Environmental Risk Assessment

One specific application of measurement uncertainty is in the assessment of

environmental risks for human health and safety.  The United States Environmental

Protection Agency (EPA) often requires scientific testing to determine if environmental

contamination levels are below a safe limit.  These tests must be precise enough to examine

concentration levels at or below critical exposure levels.  A test that is not sufficiently

precise cannot be used to make a reliable judgment, since the measurement result of "ND"

(none detected) can give a false sense of security.

An important environmental example that has significant global and economic

consequences is the issue of global warming.  Scientists have been examining the possibility

that the average temperature of the Earth is rising, which if unchecked, could result in

devastating flooding of large areas from excessive melting of the polar ice caps. As with

many scientific investigations, the data that can be obtained and analyzed are limited, and

while there appears to be an overall warming trend over the past few decades, the variability

and uncertainty in the data must also be considered in any conclusions that are made (Jones

and Wigley 1990).

1.7.3 Economic Forecasting

The level of uncertainty in measurements is especially critical when trying to predict

future activity by extrapolating from current and past data.  Economic forecasting is used by

financial and business planners in an attempt to predict future financial figures based on
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historical patterns.  The amount of uncertainty in these predictions can significantly affect

the decisions of investors and financial officers.  Federal Reserve Board Chairman, Alan

Greenspan, summed up the nature of uncertainty in economic forecasting by quoting the

British economist John Maynard Keynes, who said, "It is better to be roughly right, than

precisely wrong" (NPR 1997).  This quote (by a man whose words are heavily weighted)

suggests that uncertainty in an estimate is acceptable, as long as all known systematic errors

have been eliminated so that the estimate is (hopefully) centered on the target value (see

Figure 4-1).  This statement also summarizes the expert perspective on measurement

uncertainty - reasonably accurate results are more beneficial than precise results that have

no validity.

1.7.4 Weather Forecasting

Weather forecasting is one of the most common examples where the uncertainty of a

prediction is reported (e.g., “The chance of rain tomorrow is 80%”). Even with high-tech

meteorological equipment there are no guarantees in predicting future weather conditions.

Although weather forecasts are one of the few examples where an explicit probability is

often reported for a prediction, they are familiar to almost everyone.  Despite frequent

exposure to weather forecasts where the probability is almost always rounded to the nearest

5 or 10%, some students insist on reporting unreasonably precise experimental values

equivalent to stating that the chance of rain is 80.537%.  Evidently, simple exposure to

correct reporting methods is not sufficient for students to recognize the purpose of

significant figures.
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1.7.5  Public Opinion Polls

Results from public opinion polls are another one of the few instances where the

margin of error is regularly reported in data that are presented to the general public.  Prior to

taking a physics or chemistry class, the fine print beneath these poll results (e.g., the margin

of error is ± 3%) may be the only exposure students have to notation that explicitly shows

the relative uncertainty of a measurement (based on responses from student interviews).

Unfortunately, this ± notation for margin of error represents a different confidence interval

than is typically used in physics (see

Table 2-1).

1.7.6 Quality Assurance and Control

Uncertainty estimates play a critical role in quality assurance and control processes.

Statistical analyses form the basis of many of the decisions made in these areas.  In fact, the

ISO 9000 industry standards for quality assurance require that test measurements include an

estimate of their uncertainty as specified in the International Standards Organization (ISO)

Guide to the Expression of Uncertainty in Measurement (ISO 1993).  ISO 9000 standards

state:

The supplier shall determine the measurements to be made and the accuracy
required, and select the appropriate inspection, measuring, and test equipment that is
capable of the necessary accuracy and precision. Inspection, measuring, and test
equipment shall be used in a manner which ensures that the measurement uncertainty
is known and is consistent with the required measurement capability.
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Students who intend to pursue careers in industrial engineering or manufacturing quality

control could be better prepared by learning the fundamentals of measurement uncertainty in

an introductory physics course.

1.8 Physics Education Research

Physics education research is a relatively new academic discipline, but one that is

growing quickly.  Over the last twenty-five years, an increasing number of physicists,

science education researchers, and cognition specialists have been carefully examining how

students learn physics.  These researchers have succeeded in uncovering many student

misconceptions and the reasoning that underlies these conceptual difficulties.  Their research

findings have been used to develop new curricula that intentionally address these

difficulties, and which have been shown to dramatically improve students’ fundamental

understanding of physics concepts.  The research for this dissertation is similar to other

physics education studies that have investigated students' understanding in specific content

areas.  Table 1-1 lists the content areas that have been examined in the last two decades,

along with an estimate of the number of studies for each topic.  This list is a tally of the

studies included in a 1998 Resource Letter on Physics Education Research (McDermott and

Redish 1998).  While this list is not meant to be exhaustive, it at least provides insight into

the relative emphasis that researchers have placed on various subjects.

Table 1-1.  Recent empirical studies in physics education research

Content Area Studies
Mechanics
   Kinematics 8
   Dynamics 18
   Relativity and reference frames 5
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Electricity and magnetism
   DC circuits 10
   Electrostatics and magnetostatics 2
   Electric and magnetic fields 6
Light and optics
   Nature of light, color, and vision 5
   Geometrical optics 4
   Physical optics 1
Properties of matter, thermal physics
   Heat, temperature, and thermodynamics 10
   Pressure, density, and the structure of matter 4
Waves and sound 4
Modern physics 3
Problem-solving performance 4
Laboratory instruction and
demonstrations

5

Ability to apply mathematics in physics 4
Attitudes and beliefs of students 11
Student reasoning 4

Despite their fundamental importance, the topics of measurement and precision have

largely been ignored by physics education researchers, even though these areas are generally

addressed in the very first chapter of most physics textbooks.  One possible reason for this

deficiency is that measurement practices are generally covered in the laboratory section of

introductory physics courses, and most physics education research has focused on the

mainstream curriculum, as evidenced by the relatively few studies related to laboratory

instruction (only 4 of the 108 studies listed in Table 1-1).  In fact, only one of the studies

(Sere, 1993) addresses students’ conceptual understanding of measurements. The purpose of

this dissertation research is to begin to fill this gap in understanding how physics students

think about the accuracy of measurements they make.

Several educators have expressed their concern that procedural knowledge taught in

labs has been de-emphasized relative to declarative knowledge taught in lectures and
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tutorials (Swartz 1995; Osborne 1996; Allie, Buffler et al. 1998).  This study addresses that

concern by examining the ability of students to make accurate measurements, estimate the

uncertainty in those measurements, evaluate the quality of their results, and design

experiments based on the degree of precision required.  This investigation will help establish

a research base on procedural knowledge for experimentation.  From this foundation,

instructors can develop their curricula to better address the needs and learning difficulties of

their students.

1.9 Summary

The principal objective of this research is to examine and document introductory

physics students' conceptions and practices related to measurement uncertainty. Surprisingly

little research has been conducted to examine students’ understanding of these topics,

despite the fact that measurements and standards are usually addressed in the first chapter of

most physics books and many other physics topics have already been investigated.  Expert

knowledge (from reference materials and surveys) will serve as a standard to which the

student performance will be compared.  The ultimate goal of this research is then to provide

the physics education community with useful information that can facilitate curriculum

development and improved instruction on this fundamental topic.
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2 Background

2.1 Definitions of Terms

Terminology and notation related to measurement uncertainty is not used

consistently among experts.  In order to clarify the meaning of terms used in this

dissertation, and to show the range of meanings, a compilation of key terms with definitions

is included here. The definitions are taken from a sample of reference sources that represent

the scope of this study (the three most popular reference books in Table 2-2, plus the ISO

Guide and an industrial metrology reference book).  Definitions from Webster's dictionary

are also included for several of the terms to show the contrast between common vernacular

use and the specific meanings of these terms as they relate to scientific measurements.

Sources:

• Taylor, John.  An Introduction to Error Analysis: The study of uncertainties in
physical measurements, 2nd. ed.  University Science Books: Sausalito, CA,
1997.

• Bevington, Phillip R. and D. Keith Robinson. Data Reduction and Error Analysis
for the Physical Sciences, 2nd. ed.  McGraw-Hill: New York, 1992.

• Baird, D.C. Experimentation: An Introduction to Measurement Theory and
Experiment Design, 3rd. ed.  Prentice Hall: Englewood Cliffs, NJ, 1995.

• ISO. Guide to the Expression of Uncertainty in Measurement.  International
Organization for Standardization (ISO) and the International Committee on
Weights and Measures (CIPM): Switzerland, 1993.

• Fluke. Calibration: Philosophy and Practice, 2nd. ed.  Fluke Corporation:
Everett, WA, 1994.

• Webster's Tenth New Collegiate Dictionary, Merriam-Webster: Springfield, MA,
2000.
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Notes:  The definitions presented below are provided to explain the meanings of terms used

in this dissertation, and are therefore organized according to their meaning rather than an

alphabetized list.  Many of these terms are defined in the International Vocabulary of Basic

and General Terms in Metrology (abbreviated VIM), and their identification numbers are

shown in brackets immediately after the term (ISO 1993).  Since the meaning and usage of

these terms are not consistent among other references, alternative (and sometimes

conflicting) definitions are provided with the name and page number of the reference from

the above list.  Comments are included in italics to elaborate on several of the definitions.

References are only cited when they explicitly define a term. Omission of a reference for a

particular term generally indicates that the term was not used or clearly defined by that

reference. Even more diverse usage of these terms exists in other references not cited here.

uncertainty (of measurement) [VIM 3.9] – 1. parameter, associated with the result
of a measurement, that characterizes the dispersion of the values that could
reasonably be attributed to the measurand.  The uncertainty generally includes many
components which may be evaluated from experimental standard deviations based
on repeated observations (Type A evaluation) or by standard deviations evaluated
from assumed probability distributions based on experience or other information
(Type B evaluation).  The term uncertainty is preferred over measurement error
because the latter can never be known (ISO, p. 34). 2. An estimate of the error in a
measurement, often stated as a range of values that contain the true value within a
certain confidence level (usually ± 1 s for 68% confidence interval) (Taylor, p. 14;
Fluke, p. G-15). 3. Based on either limitations of the measuring instruments or from
statistical fluctuations in the quantity being measured (Baird, p. 2).  4. Indicates the
precision of a measurement (Bevington, p. 2). (All but this last definition suggest that
the uncertainty includes an estimate of the precision and accuracy of the measured
value.)

(absolute) uncertainty – 1. the amount (often stated in the form ± dx) that along
with the measured value, indicates the range in which the desired or true value most
likely lies (Baird, p. 14).  2. The total uncertainty of a value (Fluke, p. G-3). 3. The
error (Taylor, p. 14). (Taylor does not distinguish between the terms error and
uncertainty, which is an unfortunate source of confusion for anyone who refers to
this popular book.)
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relative (fractional) uncertainty – the absolute uncertainty divided by the measured
value, often expressed as a percentage or in parts per million (ppm) (Taylor, p. 28;
Baird, p. 14).

standard uncertainty, ui – the uncertainty of the result of a measurement expressed
as a standard deviation (ISO, p. 3).

combined standard uncertainty, uc(y) – the standard deviation of the result of a
measurement when the result is obtained from the values of a number of other
quantities.  It is obtained by combining the individual standard uncertainties ui (and
covariances as appropriate), using the law of propagation of uncertainties, commonly
called the “root-sum-of-squares” or “RSS” method. The combined standard
uncertainty is commonly used for reporting fundamental constants, metrological
research, and international comparisons of realizations of SI units (ISO, p. 3).

Type A evaluation of standard uncertainty – method of evaluation of uncertainty
by the statistical analysis of a series of observations (ISO, p. 3).

Type B evaluation of standard uncertainty – method of evaluation of uncertainty
by means other than the statistical analysis of series of observations (ISO, p. 3).

precision – 1. the degree of consistency and agreement among independent
measurements of a quantity under the same conditions (Fluke, p. G-11). 2. Indicated
by the uncertainty (Bevington, p. 2), or 3. the fractional (relative) uncertainty
(Taylor, p. 28).  4. The degree of refinement with which an operation is performed or
a measurement stated (Webster).  Precision is a measure of how well the result has
been determined (without reference to a theoretical or true value), and the
reproducibility or reliability of the result.  The fineness of scale of a measuring
device generally affects the consistency of repeated measurements, and therefore, the
precision. The ISO has banned the term precision for describing scientific measuring
instruments because of its many confusing everyday connotations (Giordano 1997).

accuracy (of measurement) [VIM 3.5] – 1. closeness of agreement between a
measured value and a true value (ISO, p. 33; Fluke, p. G-3; Bevington, p. 2; Taylor,
p. 95). 2. The term "precision" should not be used for "accuracy" (ISO, p. 33).  3. A
given accuracy implies an equivalent precision (Bevington, p. 3).  4. Freedom from
mistake or error, correctness; degree of conformity of a measure to a standard or a
true value (Webster).

true value (of a quantity) [VIM 1.19] – 1. value consistent with the definition of a
given particular quantity.  A true value by nature is indeterminate; this is a value that
would be obtained by a perfect measurement (ISO, p. 32).  2. The correct value of
the measurand (Fluke, p. G-15). 3. The value that is approached by averaging an
increasing number of measurements with no systematic errors (Taylor, p. 130).
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Note:  The indefinite article "a," rather than the definite article "the," is used in
conjunction with "true value" because there may be many values consistent with the
definition of a given particular quantity (ISO, p. 32). (This distinction is not clear in
other references that refer to "the true value" of a quantity.)

result of a measurement [VIM 3.1] - value attributed to a measurand, obtained by
measurement.  A complete statement of the result of a measurement includes
information about the uncertainty of measurement (ISO, p. 33).

error (of measurement) [VIM 3.10] – 1. result of a measurement minus a true value
of the measurand (which is never known exactly); sometimes referred to as the
"absolute error" to distinguish from "relative error" (ISO, p. 34).  2. Deviation from
the "true" or nominal value (Bevington, p. 5; Fluke, p. G-7). 3. The inevitable
uncertainty inherent in measurements, not to be confused with a mistake or blunder
(Taylor, 3).  4. The amount of deviation from a standard or specification; 5. mistake
or blunder (Webster). (Students often cite "human error" as a source of experimental
error, and the dictionary definition of the term error only confuses this misused term.
Here again, Taylor does not distinguish between the terms error and uncertainty,
which clearly have different meanings according to the ISO.)

random error [VIM 3.13] – 1. result of a measurement minus the mean that would
result from an infinite number of measurements of the same measurand carried out
under repeatable conditions (ISO, p. 34).  2. Statistical fluctuations (in either
direction) in the measured data due to the precision limitations of the measurement
device (Fluke, p. G-12; Taylor, p. 94).

systematic error [VIM 3.14] – 1. mean that would result from an infinite number of
measurements of the same measurand carried out under repeatability conditions
minus a true value of the measurand; error minus random error (ISO, p. 34).  2. A
reproducible discrepancy between the result and "true" value that is consistently in
the same direction (Baird, p. 14; Fluke, p. G-14).  3. A reproducible inaccuracy
introduced by faulty equipment, calibration, or technique (Bevington, p. 3, 14). 4.
These errors are difficult to detect and cannot be analyzed statistically (Taylor, p.
11).  5. Systematic error is sometimes called "bias" and can be reduced by applying a
"correction" or "correction factor" to compensate for an effect recognized when
calibrating against a standard. Unlike random errors, systematic errors cannot be
reduced by increasing the number of observations (ISO, p. 5).

mistake or blunder - a procedural error that should be avoided by careful attention
(Taylor, p. 3). These are illegitimate errors and can generally be corrected by
carefully repeating the operations (Bevington, p. 2).

discrepancy - a significant difference between two measured values of the same
quantity (Taylor, p. 17; Bevington, p. 5).  (Neither of these references clearly defines
what is meant by a “significant difference,” but the implication is that the difference
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between the measured values is clearly greater than the combined experimental
uncertainty.)

relative error [VIM 3.12] - error of measurement divided by a true value of the
measurand (ISO, p. 34).  (Relative error is often reported as a percentage. The
relative or "percent error" could be 0% if the measured result happens to coincide
with the expected value, but such a statement suggests that somehow a perfect
measurement was made. Therefore, a statement of the uncertainty is also necessary
to properly convey the quality of the measurement.)

significant figures - all digits between and including the first non-zero digit from
the left, through the last digit (Bevington, p. 4).  (e.g., 0.05070 has 4 significant
figures.)

decimal places – the number of digits to the right of the decimal point. (This term is
not explicitly defined in any of the examined references.)

sample standard deviation – the positive square root of the sample variance (see
standard error)

standard error (standard deviation of the mean) – the sample standard deviation
divided by the square root of the number of observations:

     SE = 
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2  is the sample variance (ISO, p.38).

Random errors are reduced by averaging over a large number of observations,
because the standard error decreases as the sample size n increases (Taylor, p. 103).

(Note: The ISO Guide and most statistics books use the letter s to represent the
sample standard deviation and s (sigma) to represent the standard deviation of the
population; however, s  is often used in casual error analysis discussions to indicate
the sample standard deviation.)

margin of error - range of uncertainty.  Public opinion polls generally use margin
of error to indicate a 95% confidence interval, corresponding to an uncertainty range
of x ± 2s  (Taylor, p. 14).

tolerance – the limits of the range of values (the uncertainty) that apply to a properly
functioning measuring instrument (Fluke, p. 3-7).

coverage factor, k – numerical factor used as a multiplier of the combined standard
uncertainty in order to obtain an expanded uncertainty, Uc.  Note:  k is typically in
the range 2 to 3 (ISO, p. 3; Fluke, p. 20-6).
(e.g.,  If the combined standard uncertainty is uc = 0.3 and a coverage factor of  k = 2
is used, then the expanded uncertainty is Uc = kuc = 0.6)
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law of propagation of uncertainty - the uncertainty sz of a quantity z = f(w1, w2,
…, wN) that depends on N input quantities w1, w2, …, wN is found from
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2 is the variance of wi and rij is the correlation coefficient of wi and wj.  If

the input quantities are independent (as is often the case), then the correlation is zero
and the second term of the above equation vanishes. The above equation is
traditionally called the "general law of error propagation," but this equation actually
shows how the uncertainties (not the errors) of the input quantities combine (ISO, p.
46; Bevington, p. 43; Taylor, p. 75).

Example:  cm 3.00.10    and    cm, 1.00.5       with  ,2 ±=±== hrhrV p
32 cm 785cm) (10.0cm) (5.0 == pV

rhhrhrV h

V

r

V

h

V

r

V
rsssss

∂

∂

∂

∂
+˜

¯

ˆ
Á
Ë

Ê
∂

∂
+˜

¯

ˆ
Á
Ë

Ê
∂

∂
= 2 2

2
2

2
2

correlatednot  are  and  if   0   and  ,     ,2    where 2 hrr
h

V
hr

r

V
rh ==

∂

∂
=

∂

∂
rpp

( ) ( ) 222222 2  hrV rhr spsps +=

[ ] [ ] 222222 cm) 3.0(cm) 5(cm) 1.0(cm) 5(cm) 10(2  pps +=V

  662 cm 555cm 993 +=Vs

%0.5
785

39
   and    cm 3.39 3 ===\

V
V

V
s

s

33 cm 40790or        cm 39785 ±±=\V   when properly rounded.

Note:  In this example, the absolute uncertainty in h is larger than for r, but
because the radius is squared, sr contributes nearly twice as much as sh to the
total uncertainty in V.

Alternative approach:
The above calculation can be simplified by dividing both sides of the
equation by V2 to yield an equation in terms of relative uncertainties:
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 %5=\
V

Vs
      (same relative uncertainty as above)

2.2 Reporting Uncertainties

When reporting the measurement of a physical quantity, some quantitative estimate

of the quality of the result should be given so that people who use the result can assess its

reliability.  Without such an indication, measurement results cannot be compared, either

among themselves or with theoretical or reference values.  Unfortunately, many scientists

and engineers do not explicitly report the uncertainty of their measurements, so that the

reader is forced to assume that the result is known to the precision implied by the number of

significant figures.  For example, v = 20.2 m/s implies an uncertainty of ± 0.1 m/s or ± 0.5%.

However, there are many cases where data are improperly reported with excessive precision

(extra digits) that is not justified by the experimental procedure, a practice that is careless,

misleading, and could even be considered unethical.

Even when the uncertainty in a measured value is explicitly reported (e.g., ± 0.1

m/s), the meaning is not always clear because there are various methods and formats for

reporting uncertainties.  The following table shows the most common formats:

Table 2-1.  Common formats for reporting uncertainties

Example Explanation Reference
m = 2.32 g with a
combined standard
uncertainty uc = 0.05 g

uc is the combination of all Type
A (statistical) and Type B
(systematic/other) errors; denotes
approx. a 68% confidence level.

ISO Guide to the Expression
of Uncertainty in
Measurement., 1993.
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approx. a 68% confidence level.
m = 2.32 g with an
expanded uncertainty
U = 0.10 g

Calibration certificates usually
report a 95% confidence level
with coverage factor k = 2.

NIST Calibration Services
Users Guide 1998, p. 4.

m = 2.32 ± 0.05 g

The meaning of ± 0.05 is vague
and depends on various
conditions; "reasonably certain"
measured quantity lies in this
range; margin of error.

J. Taylor.  Error Analysis,
1997 p. 14.

m = (2.32 ± 0.05) g
The uncertainty generally
represents ± 1s or the 68%
confidence level for the
measurement.

P. Bevington & K.
Robinson.  Data Reduction
and Error Analysis for the
Physical Sciences, 1992, p.
39.

m = 2.32 ± 0.10 g
In the field of chemistry, the
uncertainty generally represents
the 95% confidence level.

m = 2.324(52) g
"numbers in parentheses indicate
experimental uncertainties in last
two digits"
This notation is common in
atomic and nuclear physics.

Table of fundamental
constants found in several
popular physics textbooks.
E. R. Cohen, B. N. Taylor,
Rev. Mod. Phys. 1987,
59:1121.

accuracy = ± (1% of
reading + 2 digits)

Manufacturers typically specify
instrument tolerance limits, which
generally represent a 99%
confidence level, but may be 95%
or some other confidence level
depending on marketing strategy.

Fluke. Calibration:
Philosophy and Practice,
1994, p. 20-7, 22-4.
Phone conversation with
Fluke application engineer,
Mar.1999.

m = 2.32 g ± 2%  or
m = 2.32 (2%) g

2% is a relative uncertainty, but
the confidence level is not clear

m = 2.32 SE 0.01 g SE = standard error C. David. J. Chem. Educ.
1996, 73, p. 46.

55% favor candidate A
(± 3% margin of error)

the margin of error in a poll
generally represents a 95%
confidence interval

J. Taylor.  Error Analysis,
1997 p. 14.

As can be seen from the table above, not only are there differences in notation with

essentially the same meaning, but depending on the source and context, the quoted

uncertainty could represent a 68%, 95% or even a 99% confidence interval.  In an effort to
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avoid this kind of confusion, the International Organization of Standardization (ISO) has

recently specified universal guidelines for expressing the uncertainty of measurements [ISO,

1993 #120]. These guidelines are designed to provide a uniform method for comparing

measurements made in different countries in the fields of science, engineering, industry,

commerce, and regulation.  However, most physics teachers are not familiar with these

guidelines (none of the physics instructors surveyed in this study cited the ISO Guide as a

recommended reference).  Consequently, students are instructed to use methods of error

analysis and reporting that may not be consistent with the ISO Guide (as indicated in the

table above and also in the analysis later in this chapter).  Because there are various methods

for treating measurement uncertainty, an important part of this dissertation research involves

a careful examination of the instructional resources on this topic to better understand what

introductory physics students are expected to know.  These findings are presented in the

following sections.

2.3 Summary of References

As a first step in discerning what students are expected to know about measurement

uncertainty, a ranking analysis was conducted to ascertain which references are most often

cited by other sources or recommended by instructors. The analysis consisted of a cross-

referencing matrix created in an electronic spreadsheet to sort references according to how

frequently they are cited in the bibliography section of 8 reference books and 7 journal

articles on the subject of error analysis. References recommended by 10 physics instructors

from the Expert Survey (Appendix D) were also included in this analysis. The following

table summarizes the results:
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Table 2-2.  Error Analysis References, Ranked by Number of Citations

(# Cited is the number of citations made by 25 different sources.)

Author: Title
Years

Published
# Cited

J. Taylor:  An Introduction to Error Analysis 1982, 97 9
P. Bevington:  Data Reduction and Error Analysis 1969, 92 8
D. Baird:  Experimentation 1962, 95 5
Y. Beers:  Introduction to the Theory of Error 1957 4
N. Barford:  Experimental Measurements 1967 2
G. Box:  Statistics for Experimenters 1978 2
H. Braddick:  The Physics of the Experimental Method 1956 1
W. Deming:  Statistical Adjustment of Data 1944, 84 1
C. Dietrich:  Uncertainty, Calibration and Probability 1991 1
W. Dixon:  Introduction to Statistical Analysis 1969, 83 1
W. Fuller: Measurement Error Models 1987 1
ISO: Guide to the Expression of Uncertainty in
Measurement

1993 1

W. Lichten:  Data and Error Analysis 1988, 99 1
L. Lyons:  A Practical Guide to Data Analysis for Physical
Science Students

1991 1

J. Mandel:  The Statistical Analysis of Experimental Data 1964, 84 1
H. Margenau:  The Mathematics of Physics and Chemistry 1943, 47, 56 1
S. Meyer:  Data Analysis for Scientists and Engineers 1975 1
M. Natrella:  Experimental Statistics 1963, 66, 83 1
F. Pugh:  The Analysis of Physical Measurements 1966 1
B. Schigolev:  Mathematical Analysis of Observations 1965 1
G. Squires: Practical Physics 1965, 85 1
C. Swartz: Used Math 1993 1
NIST/B.Taylor:  Guidelines for Evaluating and Expressing
the Uncertainty of NIST Measurement Results
http://physics.nist.gov/Pubs/guidelines/contents.html

1994 1

E. Wilson:  An Introduction to Scientific Research 1952 1
A. Worthing:  Treatment of Experimental Data 1946 1
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H. Young:  Statistical Treatment of Experimental Data 1962 1

The books by Taylor and Bevington appear to be the most popular references, and

each is cited by about one third of the resources surveyed.  Taylor's book provides a basic

introduction to error analysis, while Bevington's book covers the topic at a higher level

suitable for upper-division undergraduate or graduate students.  Baird's book, which is

similar to Taylor's, is the only other current publication that is frequently cited.

Interestingly, the Guide to the Expression of Uncertainty in Measurement, published by the

International Organization for Standardization (ISO) in 1993, was not cited by any of the

physics experts or reference books. (Its one citation came from the NIST guidelines, which

were adapted from the ISO Guide).  It is surprising that the ISO Guide is not referenced

more often, because this document is now recognized by industry as the primary reference

on this subject.  It could be argued that the ISO Guide is not cited frequently because it is a

relatively new publication.  However, there does not appear to be a strong correlation

between the age of a reference and the number of citations in the above table since the

Pearson correlation coefficient between these variables is only r = 0.2 for the top 10

references.  More specifically, Taylor' book is cited most frequently despite the fact that it

was first published after many of the less popular books. Based on conversations with

physics teachers and graduate students, it appears that the ISO Guide is simply not well

known in academia.  In fact, in a phone conversation with the author of the NIST guidelines,

Dr. Barry Taylor encouraged me to help "spread the word" about the ISO Guide methods to

the American Association of Physics Teachers (AAPT), the American Physical Society

(APS), and the American Chemical Society (ACS) [Taylor, 1999 #269]. He said that over

30,000 free copies of the Guide have been requested and distributed to users, and a modified
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version of the Guide is available to the public on the NIST website, but evidently the Guide

is still not widely known and used in the physics community.  The consequences of this lack

of familiarity are apparent from the expert responses to questions related to the uncertainty

of measurements, as discussed in Chapter 4.

2.4 Previous Studies on Students’ Understanding of Measurements

As noted earlier, very little research has been documented to assess introductory

physics students' understanding about measurement uncertainty.  In fact, searches in the

ERIC database revealed only two published studies that explore university physics students'

conceptions about measurement errors and the reliability of experimental data.  (The

Educational Resources Information Center, ERIC, is the largest database for education

research.)  Two additional papers were discovered through cross-references and direct

contact with the authors.  These other two papers examined middle-school children’s

understanding of measurements.  It is interesting to note that none of these studies were

conducted in the United States, and all four studies examined students in different countries:

France, Great Britain, South Africa, and Korea.  Numerous other instructional references on

measurements and error analysis were found (see Table 2-2), but none of these addressed

the epistemologies of the learner.

In 1993, Sere, et al. analyzed students' concepts about the need for repeated

measurements, distinctions between random and systematic errors, and their notion of

confidence intervals (Sere, Journeaux et al. 1993).  This study involved detailed examination

of the second-semester laboratory work of twenty first-year physics students at the

University of Paris.  From observations and follow-up interviews, the researchers learned
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that most of the students did not understand the significance of confidence intervals as

demonstrated by their failure to consider the uncertainty of their measurement when

deciding whether their measurements were consistent with each other.  The researchers were

surprised that none of the students drew graphical representations of their results to examine

the global view of the measurements. The students were also generally reluctant to take

more than one or two measurements to find the focal length of a lens, and when asked to

make a series of ten measurements, they often placed more confidence in their first

measurement and used subsequent measurements to judge the preceding ones.  Despite prior

instruction on measurement errors and the use of statistics to analyze multiple

measurements, these students failed to recognize the purpose of taking repeated

measurements.  Students also confused systematic and random sources of error, and the

concepts of precision and accuracy were also not clearly distinguished by many students.

As Thomson (1997) points out, this terminology is not used consistently even in physics

publications.

Lubben and Millar (1996) surveyed over 1000 United Kingdom students aged 11,

14, and 16 about the reason for repeating measurements, how to handle repeated

measurements and anomalous readings, and the significance of the spread in a set of data.

They identified a pattern of progression in the understanding of empirical data with age and

experience (see Table 2-3).  They also suggested that other research tools using interviews

should be developed for further investigation into students’ conceptions about measuring,

accuracy and precision, random and systematic errors, sample size, and the evaluation of

small differences between measurements to decide if the difference is significant or not.
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Table 2-3.  Model of progression of ideas concerning experimental data

Level Student’s view of the measuring process (ordered novice to expert)
A Measure once and this is the right value.
B Unless you get a value different from what you expect, a measurement is correct.
C Make a few trial measurements for practice, then take the measurement you want.

D
Repeat measurements till you get a recurring value.  This is the correct
measurement.

E
You need to take a mean of different measurements.  Slightly vary the conditions
to avoid getting the same results.

F
Take a mean of several measurements to take care of variation due to imprecise
measuring. Quality of the result can be judged only by authority source.

G
Take a mean of several measurements.  The spread of all the measurements
indicates the quality of the result.

H
The consistency of the set of measurements can be judged by the spread of the
data, and anomalous measurements need to be rejected before taking a mean.

I
The consistency of data sets can be judged by comparing the relative positions of
their means in conjunction with their spreads.

Note:  Levels A-H were proposed by Lubben and Millar, while category I was proposed by Allie et al.

The suggestions made by Lubben and Millar were pursued by a group of researchers

who conducted a study in 1998 to examine 121 first-semester physics students and their

ideas about the reliability of experimental data [Allie, 1998 #217].  This study at the

University of Cape Town, South Africa, used written questions and interviews with students

to confirm many of the findings of Lubben and Millar and extend their model of ideas

concerning experimental data (Level I in Table 2-3).  Even though the students in this study

were older than those in the secondary school study, the model proposed by Lubben and

Millar was still useful for classifying the procedural ideas of these university students who

mostly fell into levels F, G, and H.  The study used nine written “probes” or scenarios all

related to the same experimental situation where a ball is released from rest, rolls down a

ramp, and lands on the floor some distance d from the edge of the table on which the ramp is

secured.  Findings from six of the probes are presented in the paper (there is no mention of

the remaining three probes).  Three of the probes dealt with the reasons for repeating
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measurements and the other three dealt with sets of experimental data (how to handle an

anomalous measurement, how to compare two sets of measurements having the same mean

but different spreads, and how to compare two sets of measurements having similar spread

but different means).  A clear majority (58%) of the students reasoned that measurements of

the distance and time the ball fell needed to be repeated in order to establish an accurate

mean value.  The remaining students were classified into nearly even clusters of thinking.

One cluster (7%) did not see a purpose in repeating distance measurements, but all of these

“non-repeaters” reasoned that several time measurements need to be taken.  Another small

cluster (8%) of “repeaters” believed that additional time and distance measurements are

needed to practice and perfect the experimental process of taking measurements.  The final

cluster (10%) of “confirmers” suggested repeating distance measurements in order to find a

recurring value.  Responses to the probes that dealt with sets of experimental data showed

that students are not able to differentiate clearly between the overall spread of the data set

and the differences between the individual data points within the set.  Details about the

findings from these data set probes can be found in Chapter 4, where similar questions were

examined for this study.

A 1998 study (unpublished) conducted in Korea investigated the measuring abilities

and conceptions of thirty middle-school students (age 14) (Soh, Fairbrother et al. 1998).

These students were asked to make measurements of length, time, volume, mass, and force

using typical laboratory instruments.  Students’ ability to make accurate measurements

(within the precision of the measuring instrument) ranged from 4% to 97% depending on the

task.  Details about several of these measuring tasks are presented in Chapter 4.  The

students were also interviewed about their conceptions on repeated measurement, use of



28

several measurements of the same quantity, and measurement uncertainty.  The researchers

found that a majority of the students repeated measurements only if they felt that their

earlier measurements were inaccurate.   Students were asked “Do you think completely

accurate measuring is possible?  If it is possible, how can you achieve it?”  To this question,

41% of the students answered affirmatively, stating that tools or machines like computers

could give accurate measurements, but humans can not unless they are trained well.  Only

one student said that both man and machine can make errors.  These results indicate that

about half of the students do not understand the inherent nature of uncertainty in

measurements.

In summary, these previous studies addressed several of the broader issues related to

measurements:  the reasons for repeated measurements, concepts about accuracy and

precision, random versus systematic errors, the treatment of anomalous data, and assessing

the quality of measured data by the mean and spread.  However, none of these earlier studies

examined the process by which students determine and quantify the uncertainty of a

measurement, which is the focus of this dissertation study. In all of the above studies, the

measurements made by students were analyzed on their own merit and without comparison

to measurements made by instructors or other “experts.”  The studies generally failed to

indicate the level of uncertainty that students should be expected to achieve.  This omission

will be examined in substantial detail in this study where student responses to measurement

questions will be compared to responses given by instructors and other “experts” who are

familiar with these issues.  Relevant components of each of these earlier studies have been

incorporated into the design of this dissertation study, and whenever possible, comparisons

are made between the current and previous findings.
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2.5 What Are Students Expected to Know and Practice?

After examining the existing references on this topic, the next step in this research

project was to organize a list of student learning objectives pertaining to measurement

uncertainty.  An initial list of 50 objectives were generated from personal experience

conducting laboratory experiments and from teaching other physics students.  This list was

refined by examining the major reference books on error analysis.  A focus group with eight

physics education researchers was conducted to further examine what other physicists feel

are the key issues that should be addressed by this study.  After analyzing the focus group

discussion, the list of learning objectives was revised.  This revised list was presented to a

group of about 25 physics graduate students and professors who rated each learning

objective on a scale of 1 (lowest) to 5 (highest) for three different criteria:

1.  How important is this concept for introductory physics students to understand?
2.  How well do introductory physics students understand this concept?
3.  How well do you personally understand this concept?

This survey can be found in Appendix B, "Learning Objectives Survey."  The results of this

survey, combined with responses from the Expert Survey (n = 28), are shown below.

Expert responses to the question:

What do you think are the most important concepts or skills students should learn
about measurement uncertainty and error analysis?

Note:  The following statements were written by experts, and were edited only enough to
clarify meaning.  The bold category headings were added after the statements were compiled
and sorted.  This procedure is consistent with the “grounded theory” approach to qualitative
research, where theoretical models are allowed to emerge from the empirical data. (Strauss
and Corbin 1990)

All measured values have uncertainty
Every measurement has uncertainty no matter how careful you are.
All measurements have a certain level of unavoidable uncertainty.
All physical measurements have uncertainties associated with them.
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All measurements are uncertain.
All measured values have uncertainty.
Every measurement has some kind of uncertainty associated with it.
Uncertainty results from estimation using tools of known precision.
All measurement tools have limits.
Know the accuracy of your apparatus.
Physical quantities are never exactly known (like p or e).
Not all results have a "theoretical value." The value quoted in textbooks is usually an

"experimental value."
Always present
Measurement results are not exact, but are in a range of results governed by a

distribution law. There are different types of probability distributions, and we
often use the normal distribution.

Uncertainties must be estimated and clearly reported
We must clearly convey the size of uncertainties to our readers.
How the uncertainty is reported must be stated and must match the type of data and

the needs of your audience.
How a number is to be used determines how it is usually reported.
The necessity of providing measurement uncertainties.
Importance of accurate estimation and reporting of uncertainty.
Reporting uncertainties (acknowledge your ignorance!)
Estimate and report random errors.
Uncertainty should be reported in labs (via sig. figs. or other method).
How to correctly present results from labs.
How to estimate an error.

Reporting proper number of significant figures
Meaning of sig. figs./uncertainty.
Significant figures - students are often insanely precise for one measurement when

others are very imprecise.
How to meaningfully interpret the results of a computer calculation: (i.e., all 14

places are not significant).
Not to report all digits on the calculator (i.e., significant figures).
Truncate measured values according to the order of possible error.

Propagation of errors
Know how to propagate uncertainty.
Methods exist for determining the uncertainty in a computed result (propagation of

errors) or in a slope or intercept from a graph.
Uncertainties propagate through the various calculations that are done with raw data.
Error propagation.
Estimate uncertainty in calculated numbers from uncertainty in data.
How to calculate uncertainty.
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Identify and classify sources of error
Be able to identify and classify sources of error in data.
Difference between systematic and random errors.
Systematic vs. random errors, selection effects.
What a systematic error is.
How to differentiate between human error and systematic error.
What, why, and where certain kinds of errors occur.
Types of error: random, systematic, etc.
Relative source of errors.
Sources of uncertainty.
Where does the error occur - in the setup, the equipment?
Distinctions among different kinds of uncertainties (imprecision, inaccuracy, limits

of resolution, etc.)

Interpreting and reducing errors
Physical interpretation - is the error low or high?  What does that say about the

experiment, and what should I do about it?
Taking multiple measurements reduces random error, but does not reduce systematic

error.
How to reduce errors.
When human error is negligible in comparison with other errors.

Use of uncertainty for comparing results or designing experiments
Think about the uncertainties when comparing different estimates for the same value.
Comparing results requires knowledge of the uncertainties.
The most important issue for me is that students understand the function of error

analysis - i.e., that the results of experiments are the subject of discourse in
communities of scientists, and that statistical measures can serve to constrain this
discourse.  For example, the community may not accept a claim unless it can be
demonstrated that it is statistically significant at p < .05; it could even specify
what sorts of tests should be done, e.g., chi-squared.  Viewed this way, error
analysis should be part of experimental design and the execution of experiments,
and not something that you do after the experiment.  Of course, defending
experimental results in debate rarely is part of what students do, at least in
introductory courses.

Error analysis is connected to experimental design, and this allows us to compare
two different experimental designs with the same aim ( e.g., using one photogate
or two to measure the acceleration of a cart on an incline).

Other
Skeptical attitudes towards dogmas about uncertainties (e.g., “a result is worthless

unless you quote an error,” “you must always put error bars on a graph”)
The difference between a theoretical and experimental value.
The meaning of "confidence interval."
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Don't discard data unless it is the result of instrument malfunction or your own
mistake.  (This is a serious problem in industry.)

How to linearize functions (Linear regression analysis will most likely be used at
some point in their careers.)

Understand what one should expect in a problem.
There are no right answers, but there are wrong answers.
Use of error bars on graphs.

Based on the above responses, it appears that the expert respondents believe it is most

important for introductory physics students to understand the fundamental principles of

measurement uncertainty, and that proficiency in performing detailed error analysis is not as

important.

2.5.1 How Did Experts Learn Error Analysis?

As part of the Expert Survey (Appendix D) that was administered to physics

graduate students and professors, the following sources were listed in response to the

question:  “Where or how did you learn to analyze errors in measurements?”

Table 2-4.  Ways experts learned error analysis

How experts learned error analysis: #Cited
Undergraduate lab classes and manuals 12
Teaching and performing lab experiments 6
Physics classes 5
Statistics courses 3
College chemistry class 2
Sophomore year in college 2
On the job training and practice 2
Journal articles 1
Calculator manuals 1
Books 1
Experimental nuclear physics 1
Astrophysics 1
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High school math class 1
Graduate school advisor 1
Common sense 1

Clearly the most significant way that physics experts learn error analysis is from studying or

teaching undergraduate lab classes.  Therefore, it is prudent to ensure that the error analysis

instruction presented to students in introductory physics lab courses is accurate.

2.5.2 Expert and Novice Approaches to Physics Problem Solving

Since this research compares students' ability to analyze measurement errors with that

of experts, it is worthwhile to present previous research findings on general differences

related to how experts and novices solve physics problems.  A large number of research

studies have been conducted to examine expert and novice differences in problem solving,

and so only the most relevant points will be summarized here.

The approach to problem solving is different for novices and experts.  Experts work

forward toward a solution while novices generally attempt a working-backward approach

using a means-ends analysis (comparing what is given in the problem with what is to be

solved and trying to reconcile the difference) (Larkin 1981) (Chi, Glaser et al. 1983).

Novices tend to classify and solve problems according to the surface characteristics (e.g., a

spring problem) instead of the underlying physics principles (e.g., conservation of energy)

(Chi, Feltovich et al. 1981). Expert problem solvers usually draw a picture or diagram to

help them think about the problem, while novices often skip this step and jump immediately

to analyzing the problem using quantitative equations. Experts add this qualitative analysis

step to better understand the problem from a broader perspective (Larkin and Reif, 1979;

Chi, Glaser, and Rees, 1983).
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2.6 Summary

Because of the various conventions that are used to discuss the uncertainty of

measurements, it has been necessary to first identify and clarify these conventions by

conducting a thorough review of the reference literature on error analysis.  These reference

materials and expert survey responses have identified the student learning objectives that

should be addressed by this research.
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3 Research Procedures

3.1 Research Methodology

This study primarily uses qualitative research methods to gain a deeper

understanding of students' epistemologies about measurement uncertainty.  Quantitative

analyses of differences within and between groups of students are performed in cases where

sufficiently large sample sizes allow for meaningful differences to be observed.  Several

different types of research procedures are used to obtain insights into students'

understanding from a variety of perspectives in an effort to triangulate upon a more accurate

and balanced view rather than one that may be biased by examining only from a single

perspective.  These research procedures include:

1. a focus group and survey with colleagues to study the key issues that should be
addressed in this study,

2. a written student survey on measurement uncertainty designed to address the key
issues,

3. follow-up interviews with students to clarify their responses to the survey,
4. a written expert survey designed to compare and contrast differences between expert

and novice responses,
5. an analysis of student laboratory reports, quizzes, and homework assignments to get

an authentic perspective of how students communicate their ideas in their
coursework,

6. interviews with students on laboratory procedures and experiment design,
7. and a lab practicum for students and experts to demonstrate their procedural

knowledge in obtaining physical measurements.

3.2 Qualitative Analysis

Even though the subject of this study is numerical in nature (since the uncertainty in

measurements can be quantified), qualitative research methods are primarily used to

examine students’ treatment of uncertainty. An inductive grounded theory approach has



36

been taken with this research to allow patterns and constructs to emerge from dense

empirical data.  This approach is described by Strauss and Corbin (1990) as distinctly

different from the more traditional scientific process of formulating a hypothesis that is then

tested against empirical observations.  The reason for the grounded theory approach is that

this research is formative in nature, so the methodology should be broad-based and not

confine the extent of the empirical data.  However, even an open-ended investigation must

have some direction in order to reach meaningful conclusions that address the questions that

motivated the study.  The direction for this research is guided by feedback from physics

instructors as described later in this chapter.

The qualitative research methods used in this study are based on practices suggested

by Gall, Borg, and Gall (1996), Miles and Huberman (1994), and Strauss and Corbin (1990).

As is common in most qualitative research, the data were coded into themes or categories

based on patterns observed through repeated words, phrases, or numerical data that emerged

from the student responses.  The coding process was often revised and repeated as additional

data necessitated the modification of existing categories.  The accumulation and analysis of

data was terminated when saturation was reached (no new findings emerged from additional

data) or the available pool of data was exhausted.  A computer spreadsheet program (Excel)

was the primary research tool used to organize and analyze the research data gathered for

this study.  This program proved to be a flexible and effective tool that facilitated both

qualitative and quantitative analysis of the data.



37

3.3 Quantitative Analysis

Although a variety of data sources were used to examine how students treat

uncertainty in measurements, the same quantitative data analysis procedures are used

throughout this study and consist of descriptive statistics and hypothesis testing.  Since the

qualitative data is categorized, the fraction of students in similar categories can be compared

across sample groups to determine if there is a significant difference between the sample

proportions.  A z-test can then be used to examine the difference between sample means.

Since the proportions are dichotomous (a student response is either in a category or not in

that category), the sampling distribution for each proportion is defined by a binomial

distribution.  The uncertainty associated with a proportion p from a sample size n is the

standard deviation of the binomial sampling distribution:

npp /)1( -=s

The sampling distribution for the sample proportion p is approximately normal if  np ≥ 10

and n(1-p) ≥ 10 (Moore 1995).  A reference table with uncertainty values calculated for key

proportions p and alternative proportions q = 1 - p is shown below.

Table 3-1.  Relative uncertainty values for binomial distribution

Probability Splits (p%)/(q%)
n 10/90 20/80 30/70 40/60 50/50
5 13.4% 17.9% 20.5% 21.9% 22.4%

10 9.5% 12.6% 14.5% 15.5% 15.8%
20 6.7% 8.9% 10.2% 11.0% 11.2%
30 5.5% 7.3% 8.4% 8.9% 9.1%
50 4.2% 5.7% 6.5% 6.9% 7.1%

100 3.0% 4.0% 4.6% 4.9% 5.0%
200 2.1% 2.8% 3.2% 3.5% 3.5%
500 1.3% 1.8% 2.0% 2.2% 2.2%

1000 0.9% 1.3% 1.4% 1.5% 1.6%
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5000 0.4% 0.6% 0.6% 0.7% 0.7%
10000 0.3% 0.4% 0.5% 0.5% 0.5%

From this table, we can see that the uncertainty values decrease as the sample size increases

and also as the proportions move away from a 50/50 split.  For example, a sample with n =

100 and a 50% proportion has a standard deviation of 5%, while the uncertainty for a 10%

proportion is 3%.  Since most of the sample sizes in this study are less than 100, the

proportions of student responses have uncertainty values that are at least 3%.  This means

that these proportions should be rounded to two significant figures so that the excessive

precision is not implied by (in)significant digits (see section 4.5.1 on relative uncertainty

and significant figures).  Consequently, all proportions tabulated in the results section of this

report are rounded to the nearest whole percentage point.

Just as the students in this study should consider the uncertainty of their

measurements when designing an experiment, this same consideration is necessary for this

research about the students.  Since comparisons will be made between groups of students,

the expected variation in the response rates for each group should be used to determine the

minimum sample size needed to show a meaningful difference between the groups.  The

required sample size could be estimated from the binomial uncertainty table above, but a

better procedure is to consider the hypothesis test that will be used to examine the difference

between proportion means.

If the sample sizes are sufficiently large (see below), then a z-test can be used to

compare the population proportions, p1 and p2 by considering the null hypothesis that these

proportions are equal:  Ho: p1 = p2.  The alternative hypothesis is that these proportions are

different:  Ha:  p1 ≠ p2 .  The test statistic is then
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The z-test statistic represents the ratio of the difference in proportions to the standard

deviation of the distribution of proportion differences.  This statistic can be used for

comparing proportions if for each sample, more than five observations fall in the category

for which the proportion is estimated, and more than five observations do not fall in that

category.  If this condition is not satisfied, then the distribution of the test statistic will not

be sufficiently close to normal, and the Fisher’s exact test should be used (Agresti and

Finlay 1997).  Since the Fisher’s exact test is accurate for both small and large sample sizes,

it will be used for all analyses.  An example of the SAS procedure and data output for this

analysis can be found in the Appendix.

The probability associated with a test statistic is found from the standard normal

distribution.  The p-value is the two-tailed probability found from a normal distribution table

or a calculated value from a computer program.  If the p-value is below a specified

significance level (a = 0.05 for this study), then the null hypothesis is rejected, and there is

sufficient evidence to accept the alternative hypothesis that the sample proportions are

different.  With an established significance level of a = 0.05, there is only a 5% chance that
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a p-value less than 0.05 will result in an incorrect decision to accept the alternative

hypothesis, when in fact the null hypothesis is true (this is called a Type I error). A Type II

error would occur if the null hypothesis were accepted when there truly was a significant

difference between the sample proportions.  These same judgment issues arise when

students compare their experimental values with a predicted value, each of which have some

degree of uncertainty (see section 4.7.1).

The minimum sample size required to show a meaningful difference between two

sample proportions can be found from the above equations.  If we believe that a proportion

difference of at least 0.2 is meaningful, then sample sizes of at least fifty will yield a

statistically significant difference between proportions p1 and p2.  Somewhat smaller sample

sizes could yield this same 20% resolution between p1 and p2 if the proportions are far from

50%.  For example, if both sample groups have 20 students, then a significant difference (p-

value < 0.05) can be observed for  p1 = 0% and p2 = 20%.  These minimum sample sizes

were considered during the design phase of this study, and a sample size of 50 students was

set as a target value.

3.4 Determining the Key Issues to Investigate

In addition to a careful review of the error analysis references already mentioned,

several other methods were employed to narrow the scope of this research and obtain

feedback from expert practitioners who have direct experience with students dealing with

measurement uncertainty issues.  While the reference books provide a comprehensive view

of error analysis, they generally do not indicate the areas that provide the greatest conceptual

difficulties for students.  In order to investigate this cognitive aspect, it was necessary to



41

consult directly with instructors who teach about measurements, and with the students

themselves.  The following sections describe how this was accomplished.

3.4.1 Review of Topics in Reference Books

As discussed in Chapter 2, a concerted effort was made to determine what students are

expected to know about the uncertainty of measurements.  For this reason, a sample of the

most popular reference books on the subject, along with physics textbooks, laboratory

manuals, and other error analysis guides were reviewed to gain further understanding of the

instructional content.  This review provided a context for addressing the conceptual

understanding of students and the difficulties they encounter in analyzing the uncertainty of

measurements.

3.4.2 Focus Group

A focus group was convened in November, 1997 to get feedback on an initial list of

perceived areas of difficulty that students encounter related to measurement uncertainty.  A

transcription of the focus group, including the questions that were addressed, is provided in

Appendix K.   This meeting included eleven members of the North Carolina State

University Physics Education Research (PER) group – seven graduate students, three

professors, and one administrator.  The hour-long discussion was recorded on audiotape, and

then transcribed.  The comments expressed in this focus group helped shape the direction of

this research study, as explained in Section 2.5.
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3.4.3 Survey of Learning Objectives

A survey (Appendix B) was developed to solicit feedback from experts on the primary

learning objectives that they felt should be addressed by this research.  This survey was

administered in the early stages of this research to about 25 physics graduate students and

professors at North Carolina State University.  The participants discussed the issues in

groups of three or four and submitted their notes after the hour-long meeting.  A summary of

these findings has already been presented in Section 2.5.

3.5 Measurement Uncertainty Survey

One of the primary research instruments for this study was a written survey with

open-ended questions to address the objectives recommended by the experts.  The questions

for this survey were designed to cover a broad range of objectives while still having some

overlap between questions to provide reliability checks. The survey was designed to require

less than thirty minutes for a typical student to complete, but students actually spent

anywhere from 10 to 60 minutes to complete these surveys. Student volunteers were

interviewed to determine if the questions were sufficiently clear and whether they elicited

the desired responses.  Throughout the development phase, the survey was revised several

times based on discussions with colleagues and responses from student interviews.  The

final product consisted of two versions (A and B) to allow for greater breadth of topics that

could be examined while keeping each survey to a reasonable length.  These surveys are

provided in Appendix C.
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3.6 Expert Survey on Measurement Uncertainty

A second survey for experts (Appendix D) was developed to gather responses from

instructors to establish a “standard” to which student responses to similar questions could be

compared.  The experts who completed this survey included physics professors and graduate

teaching assistants. Invitations to experts were publicized on the physlrnr listserve, meetings

of the American Association of Physics Teachers (AAPT), and the North Carolina Section

of the AAPT.  An effort was also made to solicit responses from chemistry professors and

graduate students; however, only three of these people returned their surveys, so nearly all

of the 28 experts who completed this survey are from the physics community.

Approximately twenty experts outside of academia were also contacted by telephone

or in person and questioned about their practices of determining and reporting uncertainties

in measurements.  These experts included industrial metrologists, application engineers,

calibration engineers, and NIST employees.  While many of these conversations were

helpful in understanding calibration and control processes, most were not directly relevant to

this study.  When asked specific questions about the expression of uncertainty, most of these

industrial contacts referred to the methods presented in the ISO Guide.  References to

conversations with these experts have been included in this study when appropriate.

3.7 Population and Sample Description

The target population for this study is introductory physics students, which includes

high school, college, and university students taking an introductory physic course.  The

primary subjects in this study were all university students in either a first or second-semester

physics course.  For comparison purposes, graduate teaching assistants (TAs) assigned to
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these courses were also included in the study.  A majority of the research findings come

from data gathered at North Carolina State University (NCSU), but data were also obtained

from the University of North Carolina at Chapel Hill (UNC) and the University of Hokkaido

in Japan (Hokudai).  The North Carolina universities were primarily chosen for their

accessibility to the researchers, but they are also believed to be representative of typical

universities, which is an important consideration when generalizing findings beyond the

scope of the sample being investigated.

3.7.1 NCSU Sample Description

Nearly all of the physics students from NCSU who participated in this study were

engineering majors.  They were enrolled in the first or second-semester calculus-based

physics courses (PY205 and PY208).  Both of these courses used the textbook by Halliday,

Resnick, and Walker: Fundamentals of Physics, 5th ed.  Multiple sections of these large-

enrollment courses follow a similar curriculum since the students take common exams that

are administered simultaneously across campus. Each of these 4-credit hour courses includes

a required laboratory component, which counts for 10% of the students’ course grade.

Students meet for lab every-other week and perform six laboratory experiments throughout

the semester.  A complete, written laboratory report is required for each experiment.  The

laboratory curriculum is typical of many university physics labs, and about half of the

experiments utilize personal computers for data acquisition and analysis.

Nearly all of the NCSU students in this study are sophomores (65%) or juniors (25%)

who have already taken a chemistry course, which includes a laboratory component where

many error analysis concepts are introduced.  The proportion of female students in this
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NCSU sample ranged from 15% to 39%, which is comparable to the overall proportion for

the university (40%), and the fraction in the school of engineering (19%).

Table 3-2.  NCSU student sample demographics

Course
#

Course
Description

Course
Content

Lab
Practic.

Sample
Size

Female
Fraction

PY205 Calculus physics for engineers Mechanics – waves Survey 28 15%
PY208 Calculus physics for engineers E & M – modern Survey 71 18%
PY205 Calculus physics for engineers Mechanics – waves Ver. A 37 27%
PY205 Calculus physics for engineers Mechanics – waves Ver. B 36 39%
PY208 Calculus physics for engineers E & M – modern Ver. A 34 32%
PY208 Calculus physics for engineers E & M – modern Ver. B 32 31%

The Student Measurement Uncertainty Survey was administered to nearly 100

students during the last laboratory period of the fall semester in 1998.  The administration of

this survey was conducted in conjunction with pre-post testing to evaluate the gains made by

students in their conceptual understanding of course-specific physics topics.  Students who

participated in the pre and post testing received extra credit equivalent to a 100% on one

additional laboratory report.  A representative sample of laboratory sections was selected to

collect data from at least thirty students in each of the two courses taught by six different

instructors.  Students in these sections were asked to complete the measurement uncertainty

survey instead of one of the post-testing instruments, and they received the same extra credit

as their peers.

3.7.2 UNC Sample Description

The UNC students in this study were enrolled in one of four classes.  Physics 24 and

25 are the required introductory physics courses for pre-medical students and other health

science majors. This algebra-based sequence used the textbook by Serway and Faughn,
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College Physics, 5th ed.   Physics 26 and 27 are the first two semesters of physics for

students who plan to major in physics, chemistry, computer science, or other technical

majors that require calculus-based physics. This sequence used the textbook by Halliday,

Resnick, and Walker: Fundamentals of Physics, 5th ed.

Each of the 4-credit hour UNC physics courses includes a required laboratory

component, which counts for 25% of the student’s overall course grade. Students meet for

lab every week and perform nine laboratory experiments throughout the semester.  A

complete, written laboratory report is required for each experiment.  The laboratory

curriculum is typical of many university physics labs and is similar between the algebra and

calculus-based tracks.  Therefore, both of the first semester students (Phys24 and 26) were

given the same lab practicum for mechanics experiments (Appendix F.1), and the second-

semester students (Phys25 and 27) used the same activity designed for electricity and

magnetism experiments (Appendix F.2).

The UNC lab practicum was administered at the end of the fall semester in 2000 as a

makeup lab activity for students who had missed a lab sometime during the semester.  These

students were assessed on their performance and received scores that were normalized to

85% (the average lab score) and counted the same as a regular laboratory report score.  The

grades were assigned by the students’ regular laboratory instructor and were based on the

grading rubric that was designed for this activity.

Two significant differences exist between the laboratory curriculum at UNC compared

with NCSU.  The first difference is that the UNC labs do not use computers to collect data

with interface probes like the NCSU labs do.  Students only use computers to analyze their

data using KaleidaGraph or Excel software. The second and most important difference for
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this study is that the topic of error analysis is emphasized much more in the UNC physics

labs than it is at NCSU.  Students are required to estimate the uncertainty in their results

(calculating standard errors and propagating uncertainties as needed) for practically every

UNC physics experiment.  This same level of rigor is not emphasized in the NCSU labs.

This difference between the two curricula is apparent when comparing the level of detail in

the measurement sections of each lab manual (Appendix A.1 and A.2).  One of the reasons

that samples were selected from each of these two schools was to examine the hypothesis

that students from the UNC sample should demonstrate a better understanding of

measurement uncertainty than students from NCSU.

Table 3-3.  UNC student sample demographics

Course
Number

Course
Description

Course
Content

Lab
Exam

Sample
Size

Female
Fraction

Phys24 Algebra physics for pre-meds Mechanics – waves I 23 52%
Phys25 Algebra physics for pre-meds E & M – nuclear II 14 64%
Phys26 Calculus physics for scientists Mechanics – waves I 17 47%
Phys27 Calculus physics for scientists E & M – Optics II 9 44%

The total enrollment at UNC is similar to NCSU, but the admissions standards are

higher for UNC (see average high school Grade Point Average and SAT scores in Table

3-4).  About 50% of the UNC students in this study are female, which is slightly lower than

the overall university enrollment which is 60% female.

Table 3-4.  NCSU and UNC student population statistics

NCSU
1997

NCSU
1999

UNC
1997

UNC
1999

Total enrollment 27,529 28,011 24,189 24,635
Undergraduate 19,097 19,027 15,321 15,434

Women 40.1% 41.1% 60.1% 60.6%
White 81.3% 81.0% 81.3% 81.2%
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African American 12.1% 10.6% 11.1% 11.2%
Freshmen Profile:

Average SAT Verbal 567 577 609 620
Average SAT Math 587 602 611 625

Average SAT Combined 1154 1179 1220 1245
H.S. GPA 3.69 3.86 4.02 4.06

Sources:  www2.acs.ncsu.edu:80/UPA,   www.ais.unc.edu/ir

3.7.3 Hokudai Sample Description

In the summer of 1998, I had the opportunity to travel to Japan and Korea to collaborate

with other physicists who were also interested in students’ understanding of measurements.

In Japan, I collaborated with Dr. Shigeo Sugiyama, a professor of science history in the

physics department of Hokkaido University (also called Hokudai).  In South Korea, I met

with Jongah Soh, a physics graduate student at Seoul National University, who under the

direction of Dr. Sungjae Park, was investigating how well her junior high school students

understood measurements they made.  While these collaborations were not the primary

focus of my dissertation study, the discussions and insights that resulted from these visits

were invaluable.

In addition to collaborating with Japanese and Korean researchers, I also planned to

compare the responses of Japanese and Korean students with answers from similar

American students.  My expectation was that the Asian students would demonstrate a higher

level of understanding about measurement uncertainty than their American counterparts.

This hypothesis was based on the superior past performance of these groups of students on

the Third International Mathematics and Science Study (TIMSS, 1996).
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Table 3-5.  TIMSS rankings for selected countries

Country Math
rank (score*)

Science
rank (score*)

Singapore #1 (643) #1 (607)
Japan #3 (605) #3 (571)

South Korea #2 (607) #4 (565)
England #25 (506) #10 (552)

United States #28 (500) #17 (534)
South Africa #41 (354) #41 (326)

*Average score of 13-year olds on TIMSS.
  Average score of all 41 countries = 500

Time and resources did not permit a detailed investigation of Korean students; however, I

was successful in gathering responses from over 150 Japanese students at Hokkaido

University, thanks to the gracious assistance of Dr. Sugiyama, who coordinated the

administration of my Measurement Uncertainty Survey in several different classes.

Hokkaido University has a total enrollment of about 12,000 undergraduate students

and 5,000 graduate students. Of the approximately 200 universities in Japan, Hokudai ranks

in the top 10.  Like NCSU, Hokudai was originally an agricultural college.  The college of

medicine is now its largest “faculty.”

The Japanese school year begins in April, so these students were in their first

semester when they were surveyed in June, 1998.  An experimental physics class is required

of all physics majors, and most take this lab course after completing their first year of

physics.  Since all of the students who participated in this study were in their first year, none

had taken this lab course, but nearly all had physics laboratory experience from high school.
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Figure 3-1.  Hokudai sample:  number of students represented in each major

The Measurement Uncertainty Survey (Appendix C) was translated into Japanese by

Dr. Sugiyama (Appendix C.3 and C.4).  Both the English and the Japanese versions of the

survey were delivered to students in six different courses: history of science, English,

biology, physics, chemistry, and engineering.  The students were not given any

compensation for completing and returning the survey, so the only motivation was

obligation (their instructor asked them to do this) or kindness.  The procedure for delivery

and collection of the surveys was not tightly controlled since Dr. Sugiyama was also acting

as coordinator on a volunteer basis. Consequently, the response rate varied from 100% in

classes where students were asked to complete the survey in class (i.e., History of Science,

taught by Dr. Sugiyama) to only about 20% in the chemistry and engineering classes.  This

low response rate is a serious threat to the internal validity of the sample because the
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students who did respond were essentially self-selected.  It is believed that self-selecting

students would feel more confident in their ability, and therefore should perform at a higher

level than a randomly-selected sample from the same population.

Follow-up interviews were conducted with 20 students to clarify their responses to

the survey questions.  These twenty students were selected based on their willingness to be

interviewed, their availability during the interview period, and their major.  In addition, two

graduate students were interviewed to gain another perspective from outside the population

of interest. One of Professor Sugiyama’s graduate students, Kaori Takaguchi, assisted with

translation during the interviews.

3.7.4 TA Sample Description

The responses of graduate teaching assistants (TAs) were included in this study to

serve as a standard to which the student responses could be compared.  The TAs who

participated included all of the laboratory instructors for the NCSU and UNC students who

were the primary subject of this investigation.  These TAs are considered to be valid experts

since they were the ones most familiar with the laboratory curriculum, and they were

responsible for assessing the laboratory and data analysis skills of the students they taught.

However, these TAs are not considered to be authorities on measurement uncertainty since

their experience and training is primarily limited to their physics teaching experience and

training, research lab experience, and their own undergraduate laboratory experiences as a

student.  The TAs participated primarily out of obligation as part of their job responsibilities,

so their motivation was also different than that of the students.  This difference in motivation

is a potential threat to the validity of the responses.
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3.8 Physics Lab Practicum

An important research tool used in this study was a laboratory practicum that was

developed to assess students’ procedural knowledge.  The Lab Practicum tested students’

ability to make accurate measurements, correctly use common laboratory equipment, and

analyze experimental data.  The questions on this exam were selected to cover the topics and

types of activities required in the lab course, with approximately equal numbers of direct

measurement and computational questions.  The exam was administered at the end of the

semester both at NCSU and UNC.  The NCSU students received extra credit for their effort

equivalent to 100% on one additional lab grade.  The UNC students took the practicum as a

makeup lab activity, so unlike their NCSU counterparts, their performance was assessed and

their score (normalized to 85%) counted toward their course grade.

3.8.1 Interviews on Experimental Design

Six experimental design interviews were conducted during the development phase of

the Lab Practicum.  Two or three students participated in each interview as they explored an

open-ended investigation with questions designed to address key aspects of each experiment

(Appendix H).  The students in these interviews were from a special section of the NCSU

PY208 course, and they received extra credit towards their lab grade for volunteering to

participate.  Each student signed an informed consent form that explained the objective,

procedure, and potential consequences of the research (Appendix G).  These experimental

design interviews were used primarily to guide the development of the Lab Practicum, so a

detailed analysis of the student procedures and responses was not performed.
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3.9 Limitations

As with any qualitative research, there are limitations to the ability to generalize the

research findings to the broader population of interest, and even more limitations to consider

when practitioners try to apply the findings to their own situation. While the student samples

selected for this study were chosen to be representative of typical university physics

students, the findings from this study may not be consistent with all groups of students

within this target population.  The most significant internal and external threats to validity

are presented below.

3.9.1 Threats to Internal Validity

Threats to internal validity are factors that can confound an observed difference

between an experiment group and a control group.  The internal validity of an experiment is

the extent to which extraneous variables have been controlled by the researcher, so that any

observed effect can be attributed solely to the treatment variable (Gall, Borg et al. 1996).

This study did not employ a traditional experimental design to examine the effect of varying

one single variable and observing the outcome, but comparisons are still made between

different sample groups, and the factors that could obscure any observed differences

between these groups should be considered.

• Differential selection

The observed differences between responses from student groups could depend as

much or more on the inherent differences between these groups (e.g. intelligence, prior

education, and experiences of the students) as on the differences in the physics laboratory

curriculum.  Random assignment of students into treatment and control groups is the best
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safeguard against differential selection, but this was not possible (or even relevant) since this

study was not a traditional experiment design.  However, it is expected that the effect of

these individual differences would be less noticeable with increased sample size.

• History

Observed differences between groups of students may be affected by other events or

factors that occur over a period of time.  This study examines different groups of students

with varying degrees of experience with physics.  It is quite possible that factors other than

their physics instruction could influence the ability of these students to analyze measurement

problems.  The most significant of these additional factors are knowledge and experience

gained from courses in statistics, chemistry, and laboratory research experience.

3.9.2 Threats to External Validity

Threats to external validity are factors that limit the ability to generalize the findings

of a study.  External validity is the extent to which the findings of a study can be applied to

individuals and settings beyond those that were studied (Gall, Borg et al. 1996).

• Population validity

There is inherent risk in generalizing from the sample of students selected from the

locally accessible population of students at NCSU and UNC to the larger target population

of introductory physics students nationwide.

• Ecological validity

The generalization of findings from this study are also limited by the extent to which

the environmental conditions of the study approximate the actual conditions of the subjects

in the target population.  For this study, these concerns relate primarily to whether or not the
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research instruments are “authentic” or contrived.  The most authentic sources of data for

this study come from the analysis of student lab reports and homework. These regular

student assignments provide a natural source of data, unlike the student surveys, interviews,

and lab practica, which were developed or conducted specifically for this research.  These

research instruments are subject to a variety of factors which can influence student

performance.

• Motivation

The students in this study were generally volunteers who received extra credit or

sometimes no tangible reward for their willingness to answer questions.  These same

students might give different answers if given the same questions as a graded homework

assignment or on an exam where the stakes are higher.
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4 Research Findings

4.1 Overview

Detailed findings from each of the research methods described in Chapter 3 are

presented here, organized by subject, from simple to complex levels of reasoning.  The order

follows the list of topics that experts believe students should know (Section 2.5), and this

same order is preserved in Chapter 5, where a taxonomy of student difficulties is presented

as a summary of these findings.  The vast majority of data from this research comes from the

Lab Practicum and the Measurement Uncertainty Survey, as these two research tools proved

to be the most useful in gathering the desired breadth and depth of insight into students’

treatment of measurement uncertainty.  Findings from student interviews, lab reports, and

homework supplement these primary research instruments.

4.2 The Nature of Uncertainty in Measurements

All measurements have some degree of uncertainty, no matter how carefully the

measurement was obtained.  However, a significant number of students (~50%) believe that

exact measurements can be made if high-quality equipment is used and there is no "human

error" (mistakes made by the person taking the measurement) (Soh, Fairbrother et al. 1998).

4.3 Accuracy, Precision and the Use of Standards

Students often confuse precision and accuracy.  A common mistake made by

students is to assume that a precise instrument or measurement is also accurate, when this

may not be the case (i.e., there is a systematic error).  Misconceptions about measurements
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that may be “precisely wrong” suggest a lack of understanding for the need to calibrate

equipment referenced to traceable standards.

One example of the confusion between these terms was explored by asking NCSU

students to rate the accuracy and precision of the target shooting scenarios depicted in

Figure 4-1.  A tally of their responses is provided in Table 4-1.

Figure 4-1.  Accuracy versus precision – target shooting example

Reference: (Doran 1980)

Table 4-1.  Student rating of precision and accuracy

n = 61 A B C
Good 59 (97%) 2 (3%) 13 (21%)Accuracy
Poor 2 (3%) 59 (97%) 48 (79%)
Good 59 (97%) 48 (79%) 3 (5%)Precision
Poor 2 (3%) 13 (21%) 58 (95%)

  Bold indicates “correct” answers according to the author of this study.

Student responses are consistent with the definitions of the terms accuracy and

precision, except for target C, where the shots are scattered (low precision), but on average

they are centered on target (good accuracy).  One explanation is that students were asked to

evaluate the accuracy and precision of diagrams similar to, but not identical to the one

above.  In one case, the last target was drawn with the shots scattered and none were within

Accuracy:  Good
Precision:  Good

Accuracy:  Poor
Precision:  Good

Accuracy: Good?
Precision:  Poor
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the inner circle or “bullseye”.  Of the 31 students in this particular group, 29 (94%) rated the

accuracy low.  This response rate was significantly different (p = 0.009) for another group of

students in the same course (same population) where 19/29 (66%) of the students rated the

accuracy low.  In this second class, one of the shots was drawn within the bullseye.  In

discussing the responses with students, several of the students said that they rated the

accuracy high for target C because of the mark in the center. This finding is similar to when

students get 0% error and do not consider the uncertainty of their experimental result (they

ignore the scatter).

4.4 Reporting the Best Estimate of a Measured Value

Before examining students’ practices related to the uncertainty in a measurement, we

should first discuss the proper procedure for determining and reporting the best estimate of

the measured value itself.  This procedure is quite simple if only one measurement is made:

the measured value should be reported to a reasonable number of significant digits, along

with a variable name and appropriate units. (Ex.  Diameter = 3.25 cm)

When multiple measurements (replicates) are made of the same value, then the sample

mean (average) is most commonly used to represent the central tendency of the data set.

The mean for n individual measurements is defined as:  
n

x
x iS

= .  If the sample distribution

is skewed by extreme values, and there is sufficient justification to omit these outliers from

the data set (see below), then the mean of the remaining values may be used to represent the

best average value.  If there is no good reason to omit outliers from the data set, then the
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median (middle value) is considered to be a better estimate of a typical central value for the

sample (Moore 1995).

4.4.1 Recognizing Anomalous Data

A common problem that arises when making measurements and analyzing data is the

question of how to treat anomalous data.  Most experts agree that data should not be

discarded without good reason, but what criteria should be used to decide whether an outlier

should or should not be omitted from the data analysis?  The simplest and safest solution is

to never discard any measurements.  However, this practice of including outliers may

significantly skew the sample data set so that the mean is not the best estimate of the target

value.  The solution that generally yields the most accurate results is to apply Chaevenet's

criterion, which states that a data point should be discarded if less than half an event is

expected to lie further from the mean than the suspect measurement (Bevington and

Robinson 1991; Taylor 1997).  This criterion accounts for outliers that will exist with some

predictable probability depending on the sample size and variance.  Another reasonable

criterion is to discard a data point if it lies more than 3 standard deviations away from the

mean, but to do so with reasonable judgment, especially if the data set is small (Baird 1995).

Perhaps the best solution is to re-examine the suspect data point and repeat the measurement

if possible.  Many great scientific discoveries have been made from investigating what first

appeared to be an anomaly.

In the South Africa study (Allie, 1998), one of the probes presented two alternatives

for dealing with an anomaly, and students were asked to choose which one they agreed with

and explain their reasoning:
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A group of students have to calculate the average of their (distance) measurements
after taking six readings.  Their results are as follows (mm):  443, 422, 436, 588,
437, 429.

The students discuss what to write down for the average of the readings.
A: “All we need to do is to add all our measurements and then divide by 6.”
B: “No. We should ignore 588 mm, then add the rest and divide by 5.”

Table 4-2.  Summary of responses to the South African anomaly probe

Category Description
Frequency
of response

n = 121

The anomaly must be included when taking an average since all
readings must be used

37 (30%)

The anomaly is noted, but it has to be included in the average since it is
part of the spread of results

14 (12%)

The anomaly must be excluded as it is most likely a mistake 30 (25%)
The anomaly must be excluded as it is outside the acceptable range 38 (31%)
Not codeable 2 (2%)

Only about half of the students excluded the anomaly, which lies about 19 standard

deviations from the mean of the other 5 data points.  Such a distant outlier is almost

certainly a mistake and should be excluded from the data analysis.  It is surprising that more

students did not exclude the anomalous point, especially when the students were explicitly

confronted with the question of whether or not the suspect data should be omitted from the

average.

In an effort to replicate the above findings and investigate how readily students

recognize an outlier, the South Africa probe was modified and included in the Student

Measurement Uncertainty Survey (Appendix C) administered to NCSU and Hokudai

students. The Lab Practicum (Appendix F) administered to NCSU and UNC students also

included these questions. Version A asked the following question:
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A group of students are told to use a meter stick to find the length of a hallway.
They take 6 independent measurements (in cm) as follows:  440.2,   421.7,   434.5,
523.4,   437.2,   428.9.  What result should they report?  Explain your answer.

Version B asked the same question with one different data point (492.5 instead of 523.4):

440.2,   421.7,   434.5,   492.5,   437.2,   428.9

The data could be graphically represented on a number line (not shown to students):

Figure 4-2.  Data points for length of hallway problem

(Note that the anomalous data points lie well beyond the cluster of other measurements.)

The purpose for the two different versions of the same question was to see if there

was any difference in how students treated the anomalous data point depending on whether

it was 1.0 m or 0.5 m from the mean of the other 5 measurements.  The measurements 523.4

and 492.5 were also chosen to see if students more readily recognized an outlier when the

first digit is different from the other measurements.  In both cases, the suspect measurement

lies at least 8 standard deviations from the mean, and therefore is most likely a mistaken

result (possibly a counting error from repeatedly moving the meter stick).  The data sets

were also chosen so that the average of either the 5 or 6 data points yielded a mean ending in

an even digit followed by a 5.  The purpose of this unusual condition was to see if students

would round their result up or down in accordance with two different recommended

procedures (Bevington and Robinson 1991; Serway and Beichner 2000).

According to their laboratory instruction manuals (Appendix A), students should

answer this question by omitting the extreme outlier and calculating the mean and standard
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error of the remaining five measurements:  L = (432 ± 3) cm.   However, most of the NCSU

and UNC students averaged all six data points and reported the mean to four significant

figures with no uncertainty estimate.  Here is a summary of how students answered this

question:

Table 4-3.  Summary of responses to treatment of data question

Student treatment of data
Hokudai
Students
n = 52

NCSU-A
Students
n = 36

NCSU-B
Students
n = 37

NCSU
TAs

n = 13

UNC
Students
n = 40

UNC
TAs

n = 10

Number who reported a value 30 29 27 11 37 10
Averaged all 6 data points 15%* 62%* 89%* 27% 80% 80%
Omitted single outlier and
averaged other measurements

35% 17% 4% 64% 8% 20%

Omitted high and low from avg. 50% 3% 4% 0 0 0
Reported median or other value 4% 17% 3% 9% 0 0

Reported 4+ significant figures 86% 87% 96% 73% 86% 30%
Reported 2 or 3 significant figs. 14% 13% 4% 27% 14% 70%
Showed explicit uncertainty 10% 10% 11% 82% 73% 100%
   Bold indicates response that is most correct according to expert opinion.
   * indicates significant differences between samples

Significant differences were observed among the sample groups in how they treated the data

and reported a best estimate.  A much higher fraction (85%) of the Hokudai students omitted

one or more data points before calculating an average value, while only about 15% of the

NCSU students, and only 8% of the UNC students rejected the outlier before finding a mean

value.  This wide discrepancy in the treatment of the data prompted further investigation.

During the follow-up interviews, several of the Japanese who had omitted both the highest

and lowest value explained that they had learned this “trimmed mean” procedure in their

statistics class, and they gave an example from the Olympics of dropping the high and low

scores for skating competitions.  Except for the Hokudai students, the percentage of students

and TAs who excluded the outlier was significantly less than the ~50% rate of the South
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African students who were explicitly confronted with this issue.  It appears then that most

students (and TAs) followed the routine practice of calculating an average value without

considering the distribution of the data.  This conclusion is supported by the lack of

drawings similar to Figure 4-2 on any of the student (and only 2 of the TA) papers.  It is

quite likely that a larger fraction of the students would have recognized and rejected the

outlier if they had plotted the data points on a number line to visualize the distribution of the

data.  As stated by Box (1978, p. 25), “a dot diagram is a valuable device for displaying the

distribution of a small body of data (up to about 20 observations).”

Slight differences were also observed between the two versions of this data analysis

question.  As expected, a larger fraction (17%) of NCSU students recognized and omitted

the outlier 523.4 from the data set compared with the 4% fraction of students who omitted

the outlier 492.5.  However, these differences are not statistically significant at the 0.05

level, so no general conclusions can be drawn.  The seemingly large difference between the

proportions of NCSU and UNC TAs who averaged all 6 measurements may also be due to

random chance since the difference is barely significant at the 0.05 level (the 2-tailed

probability from Fisher’s exact test is p = 0.03).

4.4.2 Ability to Make Accurate Measurements

Several questions on the Lab Practicum assessed students’ ability to make simple

measurements.  Two such questions asked students to measure the diameter of a penny as

accurately as possible with both a ruler (1 mm resolution) and with a Vernier caliper (0.05

mm resolution).  The ability of students and TAs to make and report an accurate

measurement was surprisingly low for such a simple task.  Only about 60% of NCSU
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students and 70% of the TAs accurately reported the diameter of penny measured with a

ruler within 0.5 mm, and 15% did not correctly give a value within the 1 mm precision of

the ruler. The UNC students demonstrated a significantly higher level of competence with

88% of the students reporting accurate values within 0.5 mm and 100% within 1 mm of 1.90

cm, which is the median value of all responses.  It is surprising that a higher percentage of

the UNC students performed better on this task than did their teaching assistants, but the

difference is not statistically significant (p = 0.065).  The one UNC TA whose answer was

not within the 1 mm resolution reported a diameter of 0.12 cm, which is clearly a mistake.

The most significant difference between the student groups was for the proportion of

students who reported an explicit uncertainty value (as required).  Even though nearly all of

the students remembered to include proper units with their measurement, none of the 37

NCSU students reported an uncertainty value, while about 40% of the UNC students did so.

Section 4.5 discusses this issue of reporting uncertainties in greater detail.

Table 4-4.  Measuring the diameter of a penny with a ruler (1 mm resolution)

NCSU UNC-CH Signif.
D = 1.90 ±  0.05 cm Students TAs Students TAs Diff.?

n = 37 n = 6 n = 40 n = 10 (Fisher)

within 0.5 mm (1.85 to 1.95 cm) 21 (57%) 4 (67%) 35 (88%) 6 (60%) 0.0042
within 1 mm (1.8 to 2.0 cm) 31 (84%) 5 (83%) 40 (100%) 9 (90%) 0.0098
value reported to 1 sig. fig. 4 (11%) 0 (0%) 0 (0%) 0 (0%) 0.049
value reported to 2 sig. figs. 26 (70%) 5 (83%) 26 (65%) 4 (40%) 0.64
value reported to 3 sig. figs. 7 (19%) 1 (17%) 14 (35%) 6 (60%) 0.13
explicit uncertainty reported? 0 (0%) 2 (33%) 18 (45%) 7 (70%) <0.001

reasonable uncert. (0.025 to 0.1 cm) 0 (0%) 1 (17%) 15 (38%) 6 (60%) <0.001
units shown? 35 (95%) 6 (100%) 40 (100%) 10 (100%) 0.23

wrong units? (do not match value) 8 (22%) 2 (33%) 4 (10%) 1 (10%) 0.21
The significant difference column gives the probability for the 2-tailed Fisher’s exact test
that compares the proportions of NCSU and UNC students; p-values less than 0.05 are
shown in bold to indicate statistically significant differences between these proportions.
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The performance for all groups dropped considerably when using the Vernier

calipers to obtain the same measurement within the same error limits.  Ironically, it appears

that students lose accuracy with this measuring instrument that allows for much greater

precision.  What is even more surprising is that only two-thirds of the students and TAs in

both groups reported diameter measurements that were consistent with each other.  The

failure of one-third of students to recognize a discrepancy between their two measurements

of the same quantity with different instruments is another indication that students do not

associate a meaning to the quantities that they measure and report – they are just numbers.

Table 4-5.  Measuring the diameter of a penny with calipers (0.05 mm resolution)

NCSU UNC-CH Signif.
D = 1.905 ±  0.005 cm Students TAs Students TAs Diff.?

n = 37 n = 6 n = 40 n = 10 (Fisher)

within 0.5 mm (1.85 to 1.95 cm) 20 (54%) 5 (83%) 27 (68%) 7 (70%) 0.25
within 1.0 mm (1.80 to 2.00 cm) 21 (57%) 6 (100%) 30 (75%) 8 (80%) 0.10

value reported to 1 sig. fig. 4 (11%) 1 (17%) 0 (0%) 0 (0%) 0.049
value reported to 2 sig. figs. 22 (59%) 2 (67%) 6 (15%) 1 (10%) <0.001
value reported to 3 sig. figs. 7 (19%) 2 (67%) 21 (53%) 2 (20%) 0.0040

value reported to 4+ sig. figs. 2 (5%) 1 (17%) 13 (33%) 7 (70%) 0.0034
explicit uncertainty reported? 0 (0%) 2 (33%) 15 (38%) 6 (60%) <0.001

reasonable uncert. (0.002 to 0.05 cm) 0 (0%) 1 (17%) 11 (28%) 5 (50%) <0.001
units shown? 27 (73%) 6 (100%) 39 (98%) 10 (100%) 0.0026

wrong units? (do not match value) 5 (14%) 2 (33%) 4 (10%) 0 (0%) 0.73
agrees with ruler measurement? 24 (65%) 4 (67%) 29 (73%) 7 (70%) 0.62

The significant difference column gives the probability for the 2-tailed Fisher’s exact test
that compares the proportions of NCSU and UNC students; p-values less than 0.05 are
shown in bold to indicate statistically significant differences between these proportions.

A third question on the Lab Practicum asked students to determine the radius of a

steel ball as accurately as possible using any available equipment.  The intent of this

question was to see how many students would correctly use the Vernier calipers (instead of

a ruler) without explicit instructions to do so.  The student performance on this task was
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disappointingly low, with only about half the students reporting an accurate radius

measurement.  A summary of the results are shown in

Table 4-6 Accurately finding radius of a steel ball using any available equipment

NCSU UNC-CH Signif.
R = 0.79 ±  0.01 cm (NCSU) Students TAs Students TAs Diff.?
R = 0.951 ±  0.001 cm (UNC) n = 36 n = 7 n = 40 n = 10 (Fisher)

Radius reported within 1 SD 5 (14%) 3 (43%) 18 (45%) 6 (60%) 0.0054
Radius reported within 5 SD 10 (28%) 4 (57%) 22 (55%) 6 (60%) 0.021

Diameter reported instead of R 7 (19%) 2 (29%) 6 (15%) 4 (40%) 0.76
Reported using calipers 13 (36%) 0 (0%) 24 (60%) 7 (70%) 0.043
used calipers correctly 2 (6%) 0 (0%) 18 (45%) 7 (70%) <0.001

Value reported to 1 sig. fig.* 15 (42%) 2 (29%) 1 (3%) 0  (0%) <0.001
Value reported to 2 sig. figs.* 15 (42%) 3 (43%) 18 (45%) 2 (20%) 0.82
Value reported to 3 sig. figs.* 5 (14%) 2 (29%) 20 (50%) 8 (80%) 0.0013
Value reported to 4+ sig. figs.* 0 (0%) 0 (0%) 1 (3%) 0 (0%) 1.0
Explicit uncertainty reported 1 (3%) 3 (43%) 17 (43%) 6 (60%) <0.001

Reasonable uncertainty 1 (3%) 1 (14%) 11 (28%) 5 (50%) 0.0027
Units shown 31 (86%) 7 (100%) 35 (88%) 10 (100%) 1.0

units consistent with value 31 (86%) 7 (100%) 33 (83%) 10 (100%) 0.76
* Number of significant figures reported has been adjusted to account for those who
reported diameter instead of radius.
The significant difference column gives the probability for the 2-tailed Fisher’s exact test
that compares the proportions of NCSU and UNC students; p-values less than 0.05 are
shown in bold to indicate statistically significant differences between these proportions.
“Correct” responses are also shown in bold.

The most significant difference between the NCSU and UNC groups is the percentage

of students who reported an explicit uncertainty value. Although these particular

measurement questions for the penny and sphere did not explicitly ask students to include an

estimate of their uncertainty, this requirement was clearly stated at the beginning of the

instruction sheets.  Despite this, only one of the NCSU students included an uncertainty

estimate on any of these three questions, while about a third to half of the UNC students did

so.  Of the UNC students who did report an explicit uncertainty, about three-fourths had
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reasonable uncertainty values (as defined by expert judgment).  This issue of determining

and reporting uncertainty values is explored in greater detail in the following section.

The TAs from both schools reported uncertainty values with their measurements more

readily than the corresponding groups of students, but the UNC TAs consistently reported

uncertainty values more frequently (and correctly) than the TAs from NCSU.  This

difference reflects the level of emphasis placed on error analysis in the laboratory curricula

of the two schools.

4.5 Determining and Reporting the Uncertainty of a Measurement

The ability of students to estimate the uncertainty of a measurement is a skill that is

necessary for the higher-level task of evaluating the quality of the measurement.

Unfortunately, many students fail to report an uncertainty for a measurement, even when

they are explicitly asked to do so.  Of those who do report a quantitative estimate of the

uncertainty, this value often indicates a level of precision that is unreasonably low or high.

One instructor emphasized this point on the Expert Survey:   “My philosophy is that a value

for the uncertainty is necessary, but the mathematics should be kept as simple as possible.

The point is that the result should be reasonable.”

The following tables summarize how UNC students reported uncertainty values on the

Lab Practicum. (Less than 10% of the NCSU students reported explicit uncertainty values

for these lab practicum questions, so a meaningful analysis of this small sample group was

not possible with such a low response rate.) Some of the questions explicitly or implicitly

required an uncertainty value as noted in Error! Reference source not found..  Questions

labeled “no mention” mean that students were not reminded to include an uncertainty value.
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However, the general instructions on the first page of the practicum stated that “for

questions that require a numerical result, write your answer as you would for a formal lab

report or scientific journal to indicate an appropriate degree of accuracy (proper number of

significant figures and uncertainty).”

Table 4-7 Student reporting of uncertainty values from UNC lab practicum

# of Sig. Figs
Question from Lab Practicum Type*

Uncertainty
Required? 1 2 3 4

Response
Frequency

1.  Measure radius of steel ball M no mention 17 17 (43%)
2.  Report length of hallway C no mention 6 6 17 1 30 (75%)
4.  Report sin(85° ± 1°) C suggested 26 7 2 35 (88%)
5.  Meas. dia. of penny with ruler M no mention 18 18 (45%)
6.  Meas. dia. of penny with caliper M no mention 15 15 (38%)
7.  Find race car accel. from graph C/M required 6 8 1 15 (38%)
9.  Report accel. of falling ball C required 15 11 6 2 34 (85%)
10. Find rotating mass from data C suggested 8 1 9 (23%)
11. Meas. density of nickel coin M no mention 5 1 6 (15%)
12. Meas. g with pendulum M no mention 2 3 5 (13%)

Average: 12 3.6 2.7 0.3 18 (45%)
*M/C indicates whether the question required a direct measurement, calculations, or both.

The response rate for reporting explicit uncertainty values ranged from 13% to 88%

on these questions, with lower response frequencies corresponding to questions that required

direct measurements and did not explicitly remind students to include an uncertainty

estimate.  The response frequency also appears to have diminished with time, since about

45% of the students included uncertainty estimates with direct measurements at the

beginning of the practicum, but the response frequency decreased to about 15% by the end

of the practicum (which took students about two hours to complete).

Somewhat surprisingly, the UNC students reported uncertainty values with an

appropriate number of significant figures (1 or 2) about 90% of the time.  Students only

reported uncertainty values with excessive precision (3 or more significant figures), on
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questions that required a calculated result.  A similar trend was observed for the result

values (as opposed to the uncertainty values), as shown in Table 4-8.

Table 4-8.  Student reporting of significant figures for UNC lab practicum

Question from Lab Practicum Type2 n 1 2 3 4 5+ U/O4 d
6.  Meas. dia. of penny with caliper M 40 0 6 21 12 1 U -0.80
4.  Report sin(85° ± 1°) C 39 4 4 25 5 1 U -0.67
5.  Measure dia. of penny with ruler M 40 0 26 14 0 0 U -0.65
1.  Measure radius1 of steel ball M 40 1 17 183 4 0 U -0.48
12. Measure g with pendulum C/M 32 0 0 16 16 0 O 0.50
2.  Report length of hallway C 37 0 3 2 32 0 O 0.78
7.  Find race car accel. from graph C/M 36 2 11 13 6 4 O 0.97
9.  Report accel. of falling ball C 38 0 3 31 3 1 O 1.05
10. Find rotating mass from data C 32 0 6 15 7 4 O 1.28
11. Measure density of nickel coin C 36 0 4 18 13 1 O 1.31
Notes:

1)  The number of significant figures has been corrected to account for students who
reported the diameter instead of the radius of the steel ball.
2)  M/C indicates whether the question required a direct measurement, calculations, or
both.
3)  Bold indicates the “correct” number of significant figures for each question.
4)  U/O indicates whether students tended to report values with too much (O = overly
precise), or with too little precision (U = under-reported).

 There appears to be a correlation between the type of question (measured or

calculated) and the implied precision of the reported values.  Students tend to report values

with too many significant figures if the result comes from calculations, but insufficient

precision is often reported for direct measurements.  One explanation is that students

underestimate the uncertainty in a single measurement because they often consider only the

instrument precision (± 1/2 division or ± 1 division) and do not include other sources of

error that contribute to the overall uncertainty.  This was the case for 7 out of 10 lab groups

in the French study in which 20 students were asked to measure the focal length of a lens,

where f was not well-defined over a 4-mm range (Sere, Journeaux et al. 1993).  Even though



70

these students recognized that a variety of factors contribute to the uncertainty in the focal

length, only one group attempted to account for these factors in their evaluation of the

uncertainty.

An attempt was made to confirm the findings from the French study by asking a

similar question on the Lab Practicum given to the NCSU and UNC students.  The students

were told to use a light ray box (which can produce 5 parallel light rays) to measure the

focal length of a diverging lens with less than 5% uncertainty in the measurement.  The

accepted answer (based on careful measurements and analysis of the TA responses) was f =

-12.5 ± 0.5 cm, which has a relative uncertainty of 4%.  A summary of the responses given

by the students and TAs is provided in Table 4-9.

Table 4-9.  Uncertainty values reported for the focal length of a lens

Uncertainty
(cm)

NCSU
Students

NCSU
TAs

UNC
Students

UNC
TAs

0.5 n = 2/28 n = 3/5 n = 10/19 n = 2/6

0.8 1
0.5 1
0.3 1
0.2 1
0.24 1
0.225 1
0.10 1 2 1
0.05 1 1 3
0.01 2

Correct f value? 2 (7%) 3 (60%) 2 (10%) 3 (50%)
f < 0 ? 0 0 5 (26%) 0

units reported? 26 (93%) 5 (100%) 17 (89%) 6 (100%)

The response rate for reporting an explicit uncertainty was quite low on this question,

especially given that the question directly stated that the uncertainty of the measurement
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should be less than 5% (implying that an uncertainty value be reported). Only 2 out of the 28

NCSU students reported an explicit uncertainty, while about half of the UNC students and

both groups of TAs showed uncertainty values.  Even more surprising is that only about

10% of the students successfully reported a focal length measurement that was within 1 cm

(2s, or 10%) of the accepted value, and only about half of the TAs did so.  We should note

that none of the students or TAs reported the focal length with a negative sign as required

for a diverging lens.  The only successful part of this question was that over 85% of the

students and all of the TAs included units with their reported values (although 5 of the

NCSU students reported mm when they meant cm). From these poor performance results, it

is clear that there are more fundamental issues at stake than the more esoteric matter of

correctly reporting uncertainty values.

4.5.1 Relative Uncertainty and Significant Figures

Even when an explicit uncertainty is not reported with a measured value, the number

of significant figures implies a certain degree of precision.  More specifically, the implied

precision is based on the assumption that the last reported digit is uncertain.  This

uncertainty may be ± 0.5 or ± 1 last digit depending on the context (Taylor 1997).

Table 4-10.  Correspondence between significant figures and relative uncertainty

Sig.
Figs. Value

Implied
Uncertainty

Implied Relative
Uncertainty

1 1 ± 0.5 or ± 1 50% or 100%
1 9 ± 0.5 or ± 1 5% or 11%
2 10 ± 0.5 or ± 1 5% or 10%
2 99 ± 0.5 or ± 1 0.5% or 1%
3 100 ± 0.5 or ± 1 0.5% or 1%
3 999 ± 0.5 or ± 1 0.05% or 0.1%
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The number of significant figures reported in the uncertainty of a measurement

should accurately reflect the appropriate confidence of the uncertainty estimate. The

precision of the uncertainty value is limited by the lowest precision factor that contributes to

the overall estimate of this value.  In many cases, an uncertainty estimate can only be known

with about 50% confidence, which means that this value should be reported with only one or

two significant figures.  Even if the uncertainty is represented by the standard deviation of

the mean, a very large sample size (n > 10 000) would be needed to justify the use of more

than two significant figures. This practice of reporting uncertainties to only one or two

significant figures is consistent with nearly all of the error analysis sources referenced in this

study.

Table 4-11.  Relative uncertainty of the sample standard deviation

n Exact 1/sqrt[2(n-1)]
Valid

Sig. Figs. Implied Uncertainty
2 76% 71% 1 10% to 100%
3 52% 50% 1 10% to 100%
4 42% 41% 1 10% to 100%
5 36% 35% 1 10% to 100%
10 24% 24% 1 10% to 100%
20 16% 16% 1 10% to 100%
30 13% 13% 1 10% to 100%
50 10% 10% 2 1% to 10%
100 7% 7% 2 1% to 10%

10000 0.7% 0.7% 3 0.1% to 1%
Source:  ISO Guide to the Expression of Uncertainty in Measurement, 1993.

The approximate expression for the relative uncertainty of the standard deviation for a

sample of size n is:

)1(2

1

-
=
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From the figures in the above table, the approximate and exact expressions for the

uncertainty of the standard deviation are essentially equivalent for n > 5.

4.5.2 Lab Practicum Question on Relative Uncertainty

Cognitive insights about relative uncertainty were gathered from both NCSU and

UNC students and TAs who took the Lab Practicum that was administered at these schools.

One particular question directly asked students to explore the connection between the

number of significant figures and the relative uncertainty implied by a number. The question

and responses are provided below:

The number of significant figures reported for a measured value suggests a certain
degree of precision.  What is the relative uncertainty implied by the following
numbers?

a)  0.20  implies an uncertainty of  ± _______ %
b)  9.8 implies an uncertainty of  ± _______ %
c)  40 implies an uncertainty of  ± _______ %
d)  0.103    implies an uncertainty of  ± _______ %

Table 4-12.  Relative uncertainty responses for UNC and NCSU students

0.20

(%)

9.8

(%)

40

(%)

0.103

(%)

Rationale NCSU
TAs
n = 8

NCSU
Stud.
n = 23

UNC
Tas

n = 16

UNC
Stud.
n = 61

5 1 2.5 1 (± 1 last digit)/value 1 0 11 15
5 1 0.25 1 1
5 2 2.5 1 1
5 10 2.5 1 1 1
5 10 20 1 1
5 10 100 0.5 1
5 5 10 2.5 1

0.05 0.01 0.25 0.01 1
0.05 0.2 1 0.003 1
0.05 0.01 0.03 0.01 1
0.05 0.01 0.03 0.029 1
2.5 0.51 1.25 0.485 (± 1/2 last digit)/value 1 2
2.5 0.5 1.25 0.049 1
2.5 0.5 1.2 1.5 1
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2.5 0.5 12.5 0.48 1
25 0.51 12.5 4.85 1
25 0.51 10 4.85 : 1
25 2.56 12.5 2.43 1
25 5.1 12.5 4.85 1
2.5 10 25 5 1

1-10 1-10 1-100 0.1-1 sig. fig. table in lab manual 3 15
1 5 1 1 1
10 1 0.1 0.1 1
1 10 200 0.1 1

0.01 0.1 1 0.001 absolute uncert. in last digit 2 5
0.01 0.1 10 0.001 1 3
0.01 0.1 10 0.0001 1
0.1 1 10 0.01 2
0.01 1 10 0.001 1
0.1 0.1 10 0.01 1
0.01 0.1 0 0.001 1
0.1 10 1 0.1 1
0.1 1 2.5 0.9 1
0.1 4.9 20 0.0515 1

0.005 0.05 0.5 0.0005 half of last digit 2 1
0.05 0.5 5 0.005 ± 5 in last sig. fig. 2
0.01 0.05 0.5 0.005 1
10 10 20 5 1
10 100 1000 0 1
10 30 90 5 1
20 5 2.5 5 1
20 40 0 50 1
20 980 4000 10.3 percent equivalent of value? 1
2 98 100 1.03 1

0.02 0.98 1 0.001 1
20 10 0 30 1
71 71 100 50 1/sqrt(n-1), n = # sig. figs. 1
47 58 7 100 1
1 10 10 0.1 1
1 1 2 1 1

Table 4-13.  Relative uncertainty responses for 1st and 2nd semester UNC lab students

0.20

(%)

9.8

(%)

40

(%)

0.103

(%)

Rationale UNC
TAs1
n = 10

UNC
Stud.1
n = 38

UNC
TAs2
n = 6

UNC
Stud.2
n = 23

5 1 2.5 1 (± 1 last digit)/value 5 10 6 5
5 1 0.25 1 1
5 10 2.5 1 1

0.05 0.01 0.25 0.01 1
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0.05 0.2 1 0.003 1
0.05 0.01 0.03 0.01 1
0.05 0.01 0.03 0.029 1
2.5 0.51 1.25 0.485 (± 1/2last digit)/value 1 1 1
2.5 0.5 1.25 0.049 1
2.5 0.5 1.2 1.5 1
25 0.51 12.5 4.85 1
25 0.51 10 4.85 1
25 2.56 12.5 2.43 1

0.05 0.5 5 0.005 ± 5 in last sig. fig. 2
0.01 0.05 0.5 0.005 1
0.01 0.1 1 0.001 absolute uncert. in last digit 5
0.01 0.1 10 0.001 1 2
0.01 0.1 0 0.001 1
0.1 10 1 0.1 1

1-10 1-10 1-100 0.1-1 sig. fig. table in lab manual 3 6 8
1 1 1 0.1 1
1 5 1 1 1
10 1 0.1 0.1 1
1 10 200 0.1 1
20 980 4000 10.3 percent equivalent of value? 1
2 98 100 1.03 1
71 71 100 50 1/sqrt(n-1), n = # sig. figs. 1

There were no significant differences at the a = 0.05 level in the proportion of

responses from the first and second semester UNC students.  However, there were

significant differences among the groups of TAs who answered this question correctly.

None (0/8) of the TAs from NCSU gave correct values for the relative uncertainties, while

over half (11/16) of the TAs from UNC correctly answered this question (p = 0.004).  The

difference in responses from these groups could be explained by the differing emphasis and

exposure to this particular concept in the curricula at the two schools.  What is most

interesting is that there may also be a difference (p = 0.09) between the UNC TAs who

taught the first and second semester lab courses.  Despite the fact that the first semester lab
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TAs had studied and answered this same question during their training session at the

beginning of the semester, only 6 out of 10 answered this question correctly, while all (6/6)

of the experienced TAs who taught the second-semester labs supplied the correct answer.

Even with the small sample sizes, the difference between these proportions is significant at

the a = 0.10 level.

It is also surprising that more of the NCSU and second-semester UNC students did not

correctly answer this question because most of these students had used WebAssign for

submitting their physics homework assignments. WebAssign is an on-line homework

delivery system that directly confronts students with the connection between significant

figures and relative uncertainty since the default setting only accepts numerical answers

within 1% of the internally calculated value.  This 1% tolerance means that students must

submit numerical answers with at least 2 or 3 significant figures.  Evidently, this connection

was either not well understood by these students, or the question on the Lab Practicum was

confusing.

Students’ failure to recognize the connection between significant figures and relative

uncertainty can be understood partially from previous research that has examined difficulties

students have in understanding ratios and proportions (Arons 1990). The findings from this

study confirm that students have greater difficulty thinking in terms of proportions than

absolute measures.

4.5.3 Propagation of Uncertainty in Calculations

The uncertainty in a calculated value depends on the uncertainties associated with

each term used to compute the result. A conservative but simple method of estimating the
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uncertainty in a result can be found by computing the maximum and minimum values based

on the uncertainties of each term (this is sometimes known as the “max-min method”). The

proper method of computing the uncertainty in a calculated result is to add the variances of

the input quantities according to the propagation of uncertainty equation (see Section 2.1).

This process of computing uncertainty values can be tedious and time consuming, but the

calculations can often be simplified by ignoring terms that do not significantly contribute to

the total uncertainty.  An “error budget” can be compiled by listing each of the uncertainty

factors and ranking them according to how much each contributes to the overall uncertainty

(see Table 4-18).  This technique facilitates identification of the primary source of

uncertainty in a result; however, it is rarely performed by students or even instructors.

Based on interview results, students generally do not recognize that the “rules of

significant figures” for addition and multiplication are simply a quick and easy way to

estimate the precision of a calculated result from the errors that propagate from the original

data.  These rules can be stated as follows:

When adding or subtracting measurements, the result should be rounded to the same
number of decimal places as the number with the lowest precision (fewest decimal
places).

When multiplying and dividing, the number of significant figures that are reliably
known in a product or quotient is the same as the smallest number of significant
figures in any of the original factors.

While these rules of significant figures are an efficient means of propagating uncertainty and

estimating the appropriate degree of precision in many calculations, they are not valid for

mathematical functions like exponentials, logorithms, and trigonometric functions.

One of the questions on the Lab Practicum required students to find the uncertainty

of a calculated result based on the uncertainties given for two independent factors:
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A student performs a simple experiment to find the average acceleration of a falling
object.  He drops a baseball from a building and uses a string and meter stick to
measure the height the ball was dropped.  He uses a stopwatch to find an average
time of fall for 3 trials from the same height and reports the following data:
h = 5.25 ± 0.15 m,  t = 1.14 ± 0.06 s.

Use the equation a = 2h/t2 to determine the average acceleration and its uncertainty.

Answer using propagation of uncertainty:  a = 8.1 ± 0.6 m/s2

Answer using max-min method:  a = 8 ± 1 m/s2

Table 4-14.  Uncertainty reported for acceleration of falling ball

uncertaint
y

value
reported

NCSU
Students
n = 22/36

NCSU
TAs

n = 7/7

UNC
Students
n = 34/40

UNC
TAs

n = 10/10

< 0.02 1 3
0.06 1 7

0.07, 0.08 2 3
0.11 1 3
0.2 3

0.3, 0.33 1 1 3
0.5 1
0.6 2 1 4

0.7, 0.8 2 2 1 2
0.88, 0.9 1 10 3

1, 1.1 3 3
> 1.2 4 3
other 2

% correct 19% 86% 30% 90%

The correct response rate of 30% for the first-semester UNC students is slightly higher (but

not statistically different) from the 19% correct response rate of the first-semester NCSU

students.  However, both of these student groups performed at a level significantly below the

~90% correct response rate of their lab TAs.  This suggests that practice and experience with

propagating uncertainties does make a difference, but a single semester is not sufficient to

master this skill.
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4.5.4 Uncertainty in Slope and y-intercept from Linear Regression

Even though the issue of determining the slope from a linear regression was not a

strong concern that emerged from the Expert Survey (this topic was only mentioned once), it

is an issue that is commonly encountered in introductory physics laboratory experiments.

Therefore, two questions on the Lab Practicum were designed to address this concept.  For

each question, students were given a set of non-linear data (distance versus time for a car

that is accelerating, and voltage versus time for a charging capacitor).  The students were

instructed to analyze the data to find either the acceleration or the time constant.

Unfortunately, fewer than 10% of the students (and only about 25% of TAs) analyzed these

data sets correctly, so it was not possible to investigate how students treated the uncertainty

in the slope of a linear regression fit for these problems.  These exercises clearly

demonstrate that students do not have the skills needed to decide how to analyze a set of

data (this procedure is usually specified for students in their lab manuals – “plot a graph of

velocity versus time”).  While the issue of determining the uncertainty in the slope is

important for drawing conclusions, it is secondary compared to the more fundamental task

of finding a reasonable estimate of the intended result.

Despite the lack of student data for this topic, a brief discussion is warranted to

address the determination of the uncertainty in the slope and y-intercept from a linear fit.  If

students graph their data by hand, the uncertainty in the slope can be estimated by drawing

linear fits with the maximum and minimum slopes that appear to reasonably fit the general

trend of the data.  The uncertainty is then half this range in the slope value (Baird 1995).

Likewise, the uncertainty in the y-intercept can also be estimated as half the range in the

intercept values for the maximum and minimum slope fits.  The easiest and most accurate
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method for students to find the uncertainty in the slope and y-intercept is from a software

program that automatically computes and reports these values.  Several such programs are

widely used in introductory physics labs (e.g., Graphical Analysis and Logger Pro by

Vernier; Science Workshop and Data Studio by Pasco).  Some data analysis programs, like

Excel, report the correlation coefficient, r or r2, instead of the standard error of the slope and

y-intercept.  For a linear fit of the equation, y = a + bx, to a set of n data points, the standard

error of the slope b and the y-intercept a can be found from the correlation using the

following formulas (Lichten 1999):
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Determination of the uncertainty in a power-law fit or other non-linear least squares fits are

beyond the scope of this study since these more complex procedures are not even addressed

in many of the reference books on introductory error analysis.

4.6 Identifying Sources of Error

Measurement errors result from a variety of sources that include the precision and

accuracy of the measuring instrument, the ability of the experimenter to read and interpret

the measurement, and the uncertainty inherent in the phenomenon being measured.  As

instructed in the ISO Guide, all of the known sources of error should be included in the

overall estimate of the uncertainty of a single measurement.  However, as stated earlier from

the French study (Sere, 1993), students tend to focus on the instrument precision when

specifying the uncertainty in a measurement.   Students also seem to believe that more

expensive or high-tech instruments may reduce or eliminate experimental error (Soh,
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Fairbrother et al. 1998).  This sentiment is supported by one NCSU student in this study who

reported that “there was no error in our experiment because we used a computer to collect

and analyze our data.”

4.6.1 Accuracy of Typical Physics Laboratory Equipment

Before discussing student views on the sources of error, it is logical to first examine

the precision and accuracy that can be expected of measuring instruments that students

typically encounter in an introductory physics lab.  To this end, I conducted a cursory

investigation of the physics laboratory equipment available to NCSU and UNC students.

The precision of each instrument was based on its resolution.  The accuracy was determined

from technical specifications in catalogs, owners manuals, NIST calibrated standards, or a

conservative estimate from the typical relative precision of the instrument.  In general, these

values can only be estimated to the nearest order of magnitude, because various grade

instruments are available and most instruments can measure values over a range that is at

least one order of magnitude.

Table 4-15.  Typical uncertainty values for common physics laboratory equipment

Dimension Instrument Typical
Precision

Typical
Accuracy

Common Limiting
Error Factor

time digital stopwatch 0.01 s 1 to 10 ppm* reaction time (~0.2 s)
time photogate 0.001 s 0.01% data processing

length meter stick 0.5 to 1 mm <0.5% visual resolution
length Vernier calipers 0.05 to 0.1 mm 0.1% misreading scale
length micrometer 0.001 mm 0.01% failure to zero, misusing
mass electronic balance 0.01 to 0.1 g 0.1% calibration
mass triple beam balance 0.1 g 0.1% calibration
mass brass mass sets 1 g 0.1% calibration

volume graduated cylinder 1 to 10 mL 1% to 5% calibration
frequency signal generator 3 to 4 digits 0.1 to 1% calibration
voltage multimeter 1 to 4 digits 1% calibration
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V, freq. oscilloscope  2 digits 1% to 3% visual resolution, calib.
current multimeter 1 to 4 digits 1% to 5% calibration

resistance multimeter 1 to 4 digits 1% to 3% extra resistance, calib.
capacitance capacitance meter 1 to 3 digits 5% to 15% calibration
inductance LCR meter 1 to 3 digits 5% to 15% calibration
mag. field Hall probe 2 digits 5% calibration

*ppm = parts per million (1 ppm = 0.0001% accuracy)

From the above table, it is clear why very few introductory physics experiments yield

results with less than 1% error.  The uncertainty of many of the above measurements is

limited by the accuracy of the device, not the precision (resolution).  This means that

students are often confronted with situations where the measurement they obtain is more

precise than it is accurate.  A notable exception is for time measurements. Quartz crystal

resonators are now widely used in most timing devices, and even though they are

inexpensive, they provide measurements that are several orders of magnitude more accurate

than any other common lab equipment.  It is interesting then, that so many students (and

reference books) mention the accuracy of a timer as a likely source of error:  “Another

source of error is that our stopwatch was not accurate [it ran too fast or slow].” – quote from

student

4.6.2 Sources of Error Reported for Nickel Coin Experiment

One part of the Lab Practicum asked students to decide if nickel coins are made of

pure nickel based on their measured density.  The actual text from this exercise is provided

here, along with a summary of the responses to this exercise.

Use a Vernier caliper and a balance to measure the density of a nickel coin.  Does your
density value match (agree with) the density of pure nickel? (rnickel = 8.912 g/cm3).
From your measured density, can you determine whether nickel coins are made of
pure nickel?  Which of your measurements contributes the most error to your
measured density value?
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Table 4-16.  Measured density of nickel coins

Density
(g/cm3)

NCSU
Students

(n = 32/36)1

NCSU
TAs

(n = 7/7)

UNC
Students

(n = 36/40)

UNC
TAs

(n = 10/10)
Average 10.6 6.8 7.5 7.0
Median2 7.2 7.1 7.1 7.2
Maximum 70.3 7.5 48.4 9.2
Minimum 0.6 4.4 3.2 1.2
Std. Dev. 16.5 1.1 7.2 2.1

1Some samples had less than 100% response rate.
2Best estimate measured by author: 8.8 ± 0.4 g/cm3.

A surprisingly wide range of density measurements was reported for this exercise.

The outliers in the student samples especially skewed the average density values for these

groups, so the median values are more representative of values typically reported.  These

median values are consistent (within 2% of each other) across all four sample groups, yet

these median values are about 20% lower than the density of nickel coins based on their

composition.  The reason for this dramatic discrepancy is discussed below.

Table 4-17.  Are nickel coins made of pure nickel?

Answer Reasoning
NCSU

Students
(n = 27/36)

NCSU
TAs

(n = 6/7)

UNC
Students

(n = 32/40)

UNC
Tas

(n = 8/10)
no none 16 (59%) 3 (50%) 26 (81%) 4 (50%)
no density too low 4 (15%) 2 (33%) 3 (9%) 4 (50%)
no cost 2 (7%)

probably not density too low 1 (17%) 2 (6%)
maybe 1 (4%)
not sure 4 (15%) 1 (3%)

yes 0 0 0 0
According to the U.S. Mint, nickel coins are 25% nickel and 75% copper.  So even though the best
estimate of the measured density of the nickel coins (8.8 ± 0.4 g/cm3) matches the density of pure
nickel, we can not conclude that these coins are made of pure nickel because any number of
combinations of metals could yield the same density (as is the case here).  However, if the measured
density of the coin was significantly different than 8.912 g/cm3, then we could conclude that the coin
was not pure nickel.
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Table 4-18.  Sources of error reported for measuring the density of a nickel coin

Source of
Error

Actual
Error

Contribution

NCSU
Students

(n = 27/36)

NCSU
TAs

(n = 8/7)

UNC
Students

(n = 27/40)

UNC
TAs

(n = 7/10)

thickness (height) 5% to 20% 4 (15%)* 3 (38%) 16 (42%)* 3 (43%)
diameter (radius) 0.5% to 1% 5 (19%) 2 (25%) 6 (16%) 1 (14%)

mass 0.1% to 2% 11 (41%)* 3 (38%) 6 (16%)* 3 (43%)
volume 2 (7%) 2 (5%)

reading caliper 1 (4%) 4 (11%)
measurement error 2 (7%) 2 (5%)

human error 2 (7%) 1 (3%)
parallax 1 (3%)

* statistically significant difference between student groups at the a = 0.05 level.

The most popular source of error specified by the UNC students was the thickness

(height) of the nickel coin.  This source of error clearly contributes the most to the total

uncertainty in the density calculation because of the indentations on the front and back faces

of the coin.  Many of these students correctly recognized and stated this fact in response to

the question about the primary source of error. The NCSU students, however, stated the

thickness at a significantly lower rate (p = 0.028) and instead primarily believed that the

mass measurement contributed the most to the overall uncertainty in the density.  One

possible reason for this difference is that the NCSU students used a triple-beam balance to

weigh the nickel coins, while the UNC students used a digital electronic balance.  Even

though both of these instruments had the same resolution (precision) of 0.1 g, there appears

to be a perception by the students that the analog instrument is less accurate than the digital

balance.  A more carefully designed experiment with a randomly-assigned split sample

would be needed to confirm this observation since the difference here is between sample

populations.
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It is rather surprising that even though a significant fraction of the students recognized

that the raised surfaces on the coins are a source of error, nearly all of the students and TAs

in this study failed to account for this factor in their calculation of the density.  As a

consequence, all but three students’ density values were unreasonably low due to the

inaccurate thickness measurement.  This systematic error resulted in about 90% of the

students and TAs concluding that nickel coins are not made of pure nickel, and none stating

that the coins are pure nickel. While it is true that nickel coins are 25% nickel and 75%

copper (according to the U.S. Mint), the average density of this nickel alloy is 8.92 g/cm3,

which is indistinguishable from the density of pure nickel (8.912 g/cm3) (Weast 1988).

Since the relative uncertainty of the measured density is at least ± 5%, it is impossible to

resolve the 0.1% difference in densities with this measurement procedure.  Despite the fact

that nickel coins should appear to be made of pure nickel based on their density, only two

out of the 76 students in this study stated that nickel coins might be pure nickel.

One additional observation from this analysis is that even though “human error”

appeared several (3) times as a source of error, it was not nearly as popular a response as is

perceived by laboratory instructors who regularly complain about students using this vague

explanation in their lab reports.

4.6.3 Sources of Error from Student Laboratory Reports

Student laboratory reports were examined to determine if students could identify the

primary source of error in an experiment.  After only a brief period of investigation, it

became obvious that this question could not be clearly answered because students generally

did not identify the single most important source of error.  Instead, they tend to cite a
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“laundry list” of all possible factors that could contribute to the experimental uncertainty,

perhaps hoping that at least one of these might be valid and satisfy the lab instructor who is

grading the report.  Unfortunately, many of these supposed sources of error were not

relevant to the experiment or did not adequately explain the observed difference between the

experimental and predicted results.  Nearly all students fail to give quantitative arguments

for the sources of error they list.  Instead, these factors tend to be based on the students’

“feel” for the experiment (as verified in student interviews).  Nowhere in this entire study

did a single student (or TA) provide an error budget which lists the sources of error along

with a numerical estimate of each contribution to the total experimental uncertainty (as

demonstrated in the ISO Guide and many NIST publications).  Such detailed uncertainty

analysis is not warranted for most introductory physics experiments; however, exposure to

simple uncertainty budgets might be a useful tool for giving students a clearer understanding

of which factors contribute the most to the total uncertainty.

4.7 Use of Uncertainty for Comparing Results

One of the most important reasons for determining the uncertainty of an experimental
result is to provide a meaningful way to compare the result with other similar values.
By comparing results, researchers can decide if an experimental result agrees with a
theoretical prediction, or if results from similar studies are consistent with each other.
While it is important to be able to compare experimental results with known
uncertainties, it is not trivial to do so because of the inherent uncertainty in the
measurements.  Even when there is a prescribed procedure for deciding when results
do or do not agree, the evaluation may not be reliable since the procedures for
evaluating and reporting the uncertainties vary among experimenters (see
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Table 2-1).  Judging the agreement between uncertain results is also challenging

because evaluation is the highest level of cognitive reasoning:

Bloom’s Taxonomy of the Cognitive Domain (Bloom 1956)

1. Knowledge – memorization of facts, words, and symbols
2. Comprehension – understanding the meaning of knowledge
3. Application – applying concepts to various situations
4. Analysis – breaking apart complex ideas
5. Synthesis – putting individual ideas together to form a complete explanation
6. Evaluation – making decisions and judging the merits of ideas

As Benjamin Bloom asserts, reasoning at the higher cognitive levels (analysis, synthesis,

and evaluation) requires an understanding at the lower levels.  This hierarchy can explain

why students struggle to make valid conclusions when evaluating empirical data.  If they do

not have the skills and experience necessary to comprehend and analyze their results, then

the process of evaluation is nearly impossible.

The research for this section was driven by the following questions:

1. How does the evaluation process of students differ from that of experts?

2. What criteria do students use to decide whether two results agree? Do students
consider the spread of the data, the average, or both when deciding? Students often
say that results agree if they are “close”.  Does their judgment depend on the number
of significant figures, the magnitude, relative difference, or something else?

3. Is there a particular representation that helps students correctly decide on agreement?

4.7.1 Criteria for Judging Agreement

The experts and reference sources on error analysis do not agree on the criteria used

to decide if two results are consistent with each other.  In fact, some references (e.g. ISO

Guide, Bevington) do not even address this critical issue and leave the judgment to the

reader.  One simple criterion is that results are consistent when their uncertainty ranges

overlap, and they are discrepant when their uncertainty ranges are not close to overlapping
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(Taylor 1997).  This “overlap criterion” also emerged as the most common viewpoint among

the 25 experts who responded to the Measurement Uncertainty Survey and 12 new graduate

Teaching Assistants in the Department of Physics and Astronomy at UNC-CH (see table

below).

 Table 4-19.  Expert criteria for deciding agreement between measurements

Criteria
Expert Survey
Respondents

(n = 25)

UNC
TAs

(n = 12)

if uncertainty ranges overlap 10 8
if 1s overlap 4

less than 2 standard errors 3 1
if difference < 3 s 1

use t-test (with pooled variances) 3
not sure 2 1
other 3 1

A short survey was designed to further analyze students’ criteria for agreement

between measured values.  This Data Comparison Survey (Appendix J) was administered to

two small groups of TAs (n = 11) and students (n = 12) at UNC.  Four measured values with

uncertainty were presented in the survey, and respondents were asked to decide if each pair

agreed with each other.  These values and uncertainties were carefully selected so that the

six possible combinations span the various degrees of overlap.  A graphical representation of

the data with error bars was also shown on the survey.  Normalized Gaussian distributions

that correspond to each measured value are shown here for comparison purposes (but were

not shown on the survey). This Data Comparison Survey addressed two main questions:

1) When do two measurements with known uncertainties agree with each other?
2)  What representation is most helpful for deciding whether results agree or
disagree?
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This second question was answered directly, and a clear majority of students (8/11)

responded that the graphical representation with error bars was the preferred notation. It is

quite interesting then that none of the 200+ students in this study ever drew such a graph to

help them evaluate whether two values overlapped. This observation is consistent with the

study by Sere, et al. (1993) where none of the 20 students drew a graph to compare the

values and the uncertainty intervals.

A = 5 ±  2
B = 13 ± 5
C = 11 ±  4
D = 17 ±  3

Figure 4-3.  Comparison of results with error bars

Normalized Gaussian Distributions
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Figure 4-4.  Corresponding Gaussian distributions

   Note:  This figure was not shown on the survey.

Students and TAs were allowed approximately ten minutes to consider their answers to each

question and write them on the survey.  A summary of their responses is shown in Table

4-20.

Table 4-20.  Do these measurements agree?

UNC
Students

UNC
TAsComparison Degree of Overlap

Y N ? Y N
B = C? Ranges overlap both midpoints 9 1 1 10 0
B = D? One midpoint within other range 4 3 5 10 0
C = D? Ranges overlap but not midpoints 3 6 3 9 2
A = C? Ranges meet but no overlap 3 5 4 5 4
A = B? Almost overlap 0 12 0 0 11
A = D? No overlap 1 11 0 0 11

Y = yes, they agree;  N = no, they do not agree;  ? = not sure, more information needed

From the above table, the criteria for agreement between two results appear to depend on the

degree of overlap between the uncertainty ranges.  This criterion is more clearly defined in

the responses from the TAs than in those of the students, who were more likely to say that

an overlapping pair did not agree, but who were also more uncertain of their answers (a

closer examination of the student criterion is presented in section 4.7.3).   The borderline

case is where the ranges just meet but do not overlap, as seen from the 5 to 4 split in opinion

from the TA respondents.  This borderline case is examined in the following section.

4.7.2 Overlapping Uncertainties versus t-test

While it is easy to identify uncertainty ranges shown by error bars that do or do not

overlap, this criterion for agreement has several hidden complications that make it much less
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clear than might be expected.  An uncertainty value can represent a variety of different

meanings, so an evaluator must ask a few basic questions:  What confidence interval does

each uncertainty represent?  Do the error bars indicate some multiple of the standard

deviation, the standard error, or the standard uncertainty?  How many degrees of freedom

are associated with each uncertainty, or what was the sample size? Are the uncertainties of

the measurements being compared similar in size, or is one much bigger than the other?  Is it

appropriate to assume that the point estimates come from normal population distributions?

Are the measurements correlated so that the uncertainties are not independent of each other?

Each of these factors can affect the conclusion made from a comparison between two values

and their uncertainty.

When conducting statistical hypothesis tests, two point estimates are considered

significantly different if the test statistic indicates sufficient evidence against the null

hypothesis (Ho) that the two values are equal.  This evidence is given by the probability (p-

value) that the test statistic would take a value as extreme or more extreme than the actually

observed outcome (Moore 1995).  If the p-value is as small or smaller than a specified

significance level a, then the data are statistically significant at level a.  A common

significance level for general hypothesis testing is a = 0.05 (Agresti and Finlay 1997). Some

experts say that if the p-value is less than 0.01, there is a highly significant difference

between the values (Taylor 1997).  The z-test statistic is used with the standard normal

distribution to compare two mean scores with known variances.  An interesting question

then arises:  Is the z-test statistic with a significance level of a = 0.05 consistent with the

overlap criterion? Answering this question requires two key assumptions:
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1. The measurement uncertainty represents the 68% confidence interval
corresponding to x ± 1s.

2. The sampling distribution for x is approximately normal (not skewed).

Each of the six possible pair-wise comparisons from the Data Comparison Survey is listed in

Table 4-21 and accompanied by a z-test probability for the specific values and uncertainties

given, along with a range of probabilities for the degree of overlap category.  The z-score is

calculated from the difference between the results and the pooled uncertainty, which is then

used with the standard normal distribution to find the two-tailed probability that z could be

greater than the absolute value of this critical value.
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The range of p-values for each degree of overlap is provided in parentheses after the specific

p-value calculated for the given data (assuming that the midpoint is a mean and the

uncertainty is a standard error).

Table 4-21.  Probability corresponding to degrees of overlap

Comparison Degree of Overlap p-value
B = C? Ranges overlap both midpoints 0.76   (0.5 to 1.0)
B = D? One midpoint within other range 0.49   (0.32 to 0.9)
C = D? Ranges overlap but not midpoints 0.23   (0.16 to 0.37)
A = C? Ranges meet but no overlap 0.18   (0.16 to 0.32)
A = B? Almost overlap 0.14   (0.1 to 0.2)
A = D? No overlap 0.001 (0 to 0.1)

The borderline case where the uncertainty ranges barely overlap corresponds to a p-value of

about 0.2 (actually 0.16 to 0.32). This means that the overlap criteria used to determine

agreement will result in a Type I decision error occurring about 20% of the time, which is

more frequent than the typical a = 0.05 significance level that is used for comparing mean
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values in statistical hypothesis testing.  (A Type I error occurs when a researcher concludes

that two values are significantly different when in fact they are not.)  From the range of p-

values, it appears that the a = 0.05 cutoff approximately corresponds to the situation where

the ± 1s uncertainty ranges come close to overlapping, but do not meet.

Since there appears to be a common belief that experimental values agree if their

uncertainty ranges overlap, it might be reasonable to suggest that a certain coverage factor k

be used to expand the experimental error bars to be consistent with the widely-used a = 0.05

significance level.  As stated earlier, if the error bars represent ± 1s, then a Type I error will

be made about 20% of the time.  However, the risk of a Type I decision error could be

reduced to a = 0.05 if the error bars represent ± ks, such that when the error ranges barely

overlap, the corresponding z-test probability would be 0.05.  The z-statistic that corresponds

to a probability of p = 0.05 for a two-tailed hypothesis test is z = 1.96.  Therefore, to find the

appropriate value for k, we use the condition that:
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The desired value of k then depends on the relative magnitude of each uncertainty, and the

limiting cases occur when the uncertainties are equal in size or when one of the uncertainties

is zero.  These two extremes yield a desired range of:

k = 1.39 (when s1 = s2)   to   k = 1.96  (when s1 = 0 or s2 = 0)

Since this range is closer to k = 2 than k = 1, it seems that scientific or industrial disciplines

which report uncertainties as ± 2s  are more consistent with accepted statistical

interpretations than are disciplines like physics where uncertainties are typically quoted as
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±1s  (see Table 2-1).  It is interesting to note that the ISO Guide to the Expression of

Uncertainty in Measurement does not specify a particular coverage factor that should be

used for an expanded uncertainty, but mentions that values of k = 2 or 3 are common, since

they correspond to approximately 95% and 99% confidence intervals for an assumed normal

distribution.

A recent article in The American Statistician (Schenker and Gentleman 2001)

examined this issue of evaluating the significance of differences between two point

estimates by comparing the overlap between their 95% confidence intervals with the

standard method of testing significance under the assumptions of consistency, asymptotic

normality, and asymptotic independence of the estimates.  The “standard method” rejects the

null hypothesis at the 0.05 level if the 95% confidence interval for the difference between

the point estimates does not contain 0.  This difference interval is computed as follows:

2
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where x1 and x2 are the point estimates, and s1 and s2 are the standard errors associated with

each point estimate.  The “overlap method” rejects the null hypothesis at the 0.05 level if the

95% confidence intervals for each point estimate do not overlap.  The nominal 95%

confidence intervals for each point estimate are given by:

22

11

96.1

96.1

s

s

±

±

x

x

If these confidence intervals overlap, then there is no significant difference between the

estimates.
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The authors of this article conclude that the overlap method has lower statistical

power than the standard method, especially when the point estimates have similarly-sized

standard errors. If the null hypothesis is true according to the standard method (no

significant difference), the overlap method rejects the null hypothesis less often (is more

conservative; lower power).  If the null hypothesis is false according to the standard method

(a significant difference does exist), the overlap method fails to reject the null hypothesis

more frequently (is more conservative; lower power).  The overlap method approaches the

standard method in the limit as one point estimate has a standard error that is much less than

the other (assuming that the 95% confidence limits are employed).  The authors

acknowledge that the overlap method is simple and often convenient, but they conclude that

the overlap method should not be used for formal significance testing.  However, the

analysis in this article only considers a 95% confidence interval for each point estimate.  As

discussed earlier in this section, a 68% confidence interval is most often used in physics, and

this tends to have the opposite effect of having a Type I error more often than would occur

with the standard method.

This article only examined the case for large sample sizes where the standard error is

fairly well known.  However, introductory physics labs often have small sample sizes

(generally n = 1 to 10 data points), so the error (or uncertainty) in a measurement is not well

known.  In such cases where assumptions of normality are not met, the standard method is

not valid and the overlap method is better justified since no judgement about significant

differences can be made with high confidence.  For example, with only 5 data points, the

Student’s t-statistic that corresponds with an a  = 0.05 is t = 2.25 when s1 = s2.  In this case,
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a confidence interval using k = 2 instead of k = 1 would yield overlap judgments that are

more consist with the standard method.

In conclusion, the overlap method is more intuitive to both undergraduate and

graduate students, especially if they have not studied tests of statistical significance.  A

graphical depiction of the overlapping confidence intervals also aides students in concluding

whether their experimental results do or do not agree with a theoretical prediction within the

uncertainty of their measurements.  As discussed in the next section, students tend to make

judgments about the quality of their data without even considering the uncertainty associated

with the measurements.  While the standard method is most accurate for evaluating the

difference between large sample averages, the overlap method appears to be the best option

for introductory physics students to use since it provides a simple and reasonably accurate

way to decide if two measurements are consistent with each other.

4.7.3 Case Study for Judging Agreement

An effort was made to replicate the findings from a previous study where students

were confronted with a situation where there is not clear agreement between two data sets.

In the study conducted by S. Allie, et al., 121 students were asked to defend one of two

positions taken in a scenario where a ball is allowed to roll down a ramp and fall onto the

floor a distance d from the edge of the table:

Two groups of students compare their results for 5 releases of a ball at h = 400 mm.
Group A:  441   426   432   422   444        Average = 433 mm
Group B:  432   444   426   433   440        Average = 435 mm
Group A says:  "Our result agrees with yours."
Group B says:  "No, your result does not agree with ours."
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The following table categorizes the responses given by the students:

Table 4-22.  Responses from South African students about agreement of measurements

Code Description
Number of
Students
(n = 121)

Yes No

1 It depends on how close the averages are 62 (52%) ~35% ~17%
2 It depends solely on the relative spreads of the data 4 (3%) 0 3%
3 It depends on the degree of correspondence

between individual measurements in the two sets
10 (8%) unclear unclear

4 It depends on both the averages and uncertainties 34 (28%) unclear unclear
5 Not codeable 11 (9%) unclear unclear

According to the researchers, the most prevalent idea was to compare the average values and

then decide whether the averages were “close, far, or consistent.”  About two thirds of this

Category 1 group concluded that the two averages were consistent by suggesting that “the

averages might not be the same but they are only different by 2 mm, which is a very small

distance.”  The remaining third expressed the contrary view that “433 and 435 are totally

different numbers,” and several students stated that “the answers aren't exactly the same, so

how can they agree with each other?”  It is interesting to note that the students considered

the absolute difference between the average values (2 mm) instead of the relative difference

between the values (0.5%).  This type of thinking is consistent with novice problem solvers

(Arons 1990).

Students in Category 2 expressed statements like, “the results do not agree since the

uncertainty in group A will be greater than group B.”  Category 3 students compared

individual measurements between the sets of data and typically reasoned that “the values for

the two groups match almost exactly.”  The most sophisticated reasoning was demonstrated

by about a third of the students (Category 4) who considered both the uncertainty or spread
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in conjunction with the average to come to a conclusion.  However, this group had some

difficulty expressing their ideas, making statements like, “if we find the uncertainties in A

and B the average of A will most likely fall in the range of B(av) ± B and the same will

apply to the average of B to A(av) ± A,” and “with every average there should be a standard

deviation and chances are both will be in the same range.”

This same scenario was presented in the Data Comparison Survey to a first-semester

physics laboratory course at UNC, and these students gave similar responses.  Of the 11

students surveyed, 8 said that the results of Group A agreed with those of Group B.  As can

be seen from the written responses provided below, these students possess a wide array of

vague and unclear criteria for judging agreement.

a. What do you believe?  Do these results agree with each other?  Please explain your
answer.
b. In general, what criteria do you use to decide if two measurements agree with each
other?”

1a. Yes, they agree with each other.  Both averages and sets of data are similar
leading to a conclusion that the results are at least accurate and most probably
precise.
1b. Their accuracy or closeness to each other is the criteria I would use.

2a. Yes they agree, despite the fact that in each single release, the results can vary
greatly, the averages come out to be close to one another.
2b. How close their averages are, how precise the data of one group is compared to
the other.

3a. Yes; they have almost identical average, and individual drops of both groups are
within the same range.
3b. Consistency

4a. I think that these results do agree with each other.  Compared to the large (>400
mm) distance being measured, a difference of 2 mm is not significant enough to
create a discrepancy between the results.  If group B is being exact, then any
difference at all, even one of 1 x 10-10 mm would create a discrepancy.
4b. I look at how significant the difference is in relation to the magnitude of the data
being measured.”
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5a. Yes, neither shows big discrepancies from the mean, so they agree with each
other.
5b. Precision and accuracy; the difference in the averages.

6a. I would say the results agree because 3 of 5 of their numbers match and numbers
which don’t are within bounds of the experiment with the exception of 422.
6b.  Yes, for the same reason stated above.

7a. I believe that the results agree with each other.  Their expected difference is very
similar.  From just eyeing the data, it appears their standard deviations would
overlap.
7b. First accuracy. If the results are too widely varied, I wouldn’t consider them
valid.

8a.  The results of both groups are similar to each other; in three cases, they had the
exact same number.  In another comparison between one of the two remaining sets
of numbers (the ones that don’t match), the difference is only 1 mm.  The last
comparison is off by more – 11 mm.  This could be due to a human error, so in all, I
think that the results are in agreement.
8b.  Graphing is a more precise method, the eye can catch a difference more easily.

9a. Generally the results agree with each other due to the fact that the final answers
of each group is fairly close.  But they do not exactly agree with each other.
Therefore, it really depends on how close you want to be.  Overall, they do not agree.
9b. The final average, the closeness of each individual drop, the overall spread of the
drops.

10a. I believe that the data doesn’t agree because the amounts vary by too much.  Of
course errors will occur in both labs, but a difference of 2 mm is too much.
10b. I try to decide by how much the 2 measurements differ, in order to see if they
agree.

11a. No.  While the averages are nearly the same, the data is not.  Group B had the
one “low” data point at 426 mm and it is basically that one point that makes their
average even close to group A’s, who have more than one data point in that general
vicinity.
11b. Not only do the average data measurements have to be nearly the same, but the
patterns of the individual points must also be nearly alike.

Table 4-23.  Criteria used by UNC students to judge agreement

Criteria Frequency
(arbitrary) closeness of average results 3
same or different individual data points 3
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similar spread or range of data 3
small relative difference in results 2
precision or consistency of data values 2
average and patterns must match 1
2 mm difference is too much 1

Based on the above responses, the criteria used by students to determine agreement

between responses is much more vague than the overlap criterion used by experts.  Students

make judgments about the closeness of the agreement without considering the inherent

variability of the data.  These judgments are based on arbitrary standards or the student’s

“feel” for the size of the difference between the results.  This conclusion is supported by

statements made by students in interviews and in their lab reports.  One student explained

that the percent error between an experimental and theoretical value should be less than

10%, because that is what his high school teacher had told him (thus basing his judgment on

an authority figure instead of his own empirical data).  Another student used a 5% cutoff

limit for an acceptable percent error, since that is what he learned from his statistics class

(he had confused the a = 0.05 level of significance with the concept of percent error).

Several other students simply stated that they “felt” their experimental error was acceptable

because it was “small.”

Students also seem to focus their attention on the agreement of individual data points

rather than the general trend of the data.  All of these epistemologies are distinctly different

from the expert model of thinking, which considers the difference between the results in

terms of the uncertainty or spread in the results for the specific situation being investigated.

Based on student lab reports, it seems that students are often reluctant or unable to

make judgments about whether their results agree or disagree with similar results.  Students
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also have the tendency to claim that their experimental result agrees with (or even proves!) a

theory, even when such claims cannot be justified in terms of the data they collected and

analyzed.

4.7.4 Best Representation for Judging Agreement

In order to examine this data comparison issue from another perspective, a

combination oral/written survey was administered to the NCSU PY205 SCALE-UP (first

semester calculus-based physics) class of 44 students on November 3, 1999 (which was after

the students’ third lab of the semester).  This survey was presented via a PowerPoint

presentation titled, "An Examination of Scientific Data:  When are two results different?"

(See Appendix I for original wording of questions).  No explicit instruction had been given

to students prior to this survey to judge agreement between measured values, yet they had

been asked to discuss in their lab reports the results they got from experiments compared

with what they expected from theoretical predictions.

Below are the student responses to each of the eight questions that were asked.

Following each question is an analysis of the results and an attempt to make sense of the

results in comparison with the South Africa study.

“Suppose an experiment has been conducted to examine the effect of an independent
variable on the time for an object to move along a given path.”

Question #1.  Do these results suggest a significant difference?

without treatment:  t1 = 1.86 s
with treatment:       t2 = 2.07 s

Student Responses (n = 44):
• YES - explain why 19 (43%) – “correct” response
• NO - explain why 12 (27%)
• CAN’T TELL - explain why 13 (30%)
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Since the difference between these values (0.21 s) is much greater than the precision

of either value (0.01 s), there is clearly a discrepancy between the values as they are stated

with no explicit uncertainty.  Despite this fact, about a third of the 44 students answered that

there is no significant difference between these values.  Evidently these students assumed

some degree of uncertainty for each value and decided that the absolute difference of 0.21 s,

or the relative difference of 11%, was not large enough to consider these values to be

significantly different.  This type of reasoning is clearly much different from that of experts

who judge agreement or disagreement between values based on the amount of uncertainty

associated with the values.

Question #2. What if 2 more trials were run?  Does t1 = t2 ?

Trial # t1 (s)
w/o treatment

t2 (s)
with treatment

1 1.86 2.07
2 1.74 1.89
3 2.15 2.20
Averages: 1.92 2.05

Student Responses (n = 44):
• YES - explain why 10 (23%) – “correct” response
• NO - explain why 22 (50%)
• CAN’T TELL - explain why 10 (23%)
• Other   2 (4%)

Here the two data sets agree because they overlap almost entirely, although this overlap is

not entirely obvious by simply glancing at the values in the data table.  (The mean values

also agree statistically since a t-test yields a p-value of 0.42, which is hardly sufficient

evidence to reject the null hypothesis.)  It would be easier to visualize this overlap if the data

ranges were presented graphically, which is the purpose of the next question.  It is
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interesting that many students maintained their same position as they did for the first

question – the values are not equivalent, despite the additional information about the

variation in these numbers.  This finding is somewhat consistent with the S. Africa study

where 17% of the students said that the two average values they were examining (433 and

435) were not equivalent.

Question #3.  Does t1 = t2 when plotted?

Experimental Results

1.5 1.7 1.9 2.1 2.3 2.5

X1

X2

Student Responses (n = 44):
• YES - explain why 14 (32%) – “correct” response
• NO - explain why 26 (59%)
• CAN’T TELL - explain why 3 (7%)
• Other 1 (2%)

It is not clear why most of the students responded that the two values were not equivalent

since the general consensus from both students and experts is that two results agree with

each other when their uncertainty ranges overlap.  Perhaps this question is perceived

differently from Question #3 above, or maybe the students answering the questions were

confused about the series of questions.
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4.7.5 Conclusions about the Agreement of Measured Results

Multiple methods were used to examine student and expert thinking about the

agreement between measurements.  From this analysis, it appears that novices tend to think

more in terms of absolute differences between results and ignore the uncertainty of the

values while experts think more in terms of relative differences and also consider the

uncertainty of the values when making comparisons. The “overlap criterion” is most

commonly used by physics laboratory instructors to decide whether two results agree with

each other.  More advanced experts use the statistical t-test to decide agreement, but the

conclusions found from applying a t-test do not always correspond with the overlap

condition.  The criteria used by students to judge agreement is often arbitrary and not as

clearly defined as that of experts.  Students often claim that their results agree with a

theoretical prediction even when such a claim cannot be justified by the uncertainty of their

experimental data.

Experimental Results
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5 Summary

5.1 Overview

The objective of this broad-based study was to examine the fundamental practices

demonstrated by students related to the treatment of uncertainty associated with

measurements. The research was guided by the following questions:

1.  What are the common conceptions and practices demonstrated by introductory
physics students regarding measurement uncertainty and error analysis?
2.  How do students treat the uncertainty in measurements differently than experts?
3.  Why do students believe what they do about measurement uncertainty?

5.2 Principle Findings from Students

Through this investigation, the following principle findings were discovered.  These

findings are part of a comprehensive list that is presented in the Appendix.

• Arbitrary evaluation of results without considering uncertainty - Students often

make arbitrary judgments about the agreement between results and fail to consider the

uncertainty estimates when making these comparisons.  It appears that students do not

recognize that the primary reason for determining the uncertainty in measurements is to

convey the quality of the result and to make objective decisions about the agreement

between results.

• Failure to report uncertainty - Students tend to avoid specific statements that quantify

the uncertainty of a measurement, even when they are explicitly instructed to include an

uncertainty estimate.  This reluctance is more pronounced for directly measured values

than for calculated values.
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• Failure to identify primary source of error - Students have difficulty identifying the

primary source of error in an experiment, and they generally do not analyze the effects

of individual uncertainty contributions to the total uncertainty of the result.  Instead,

students often list a variety of possible factors that might have affected the experimental

results, but these factors are rarely quantified or ranked to indicate which ones are most

significant.

• Improper use of significant figures - Students tend to overstate precision (too many

significant figures) of calculated values, and understate the precision of directly

measured values.

• Improved but limited expertise with increased exposure - The quality of responses to

measurement questions was generally aligned with the amount of training and exposure

students had to the subject.  While this finding is not surprising, it provides

encouragement that instruction does appear to make a difference.  However, even

graduate teaching assistants made many of the same mistakes or omissions that were

common among student responses, which suggests that these issues are not trivial to

learn and apply. This conclusion is also supported by comments made by instructors

who were reluctant to call themselves “experts” in the subject of error analysis.

5.3 Additional Findings

While the focus of this research was an examination of introductory physics students’

understanding of measurement uncertainty, several important findings outside this scope

were discovered and should be highlighted:
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• In 1993, the International Standards Organization (ISO) published a new set of

guidelines for expressing the uncertainty in measurements.  Nearly all of the physics

instructors and students surveyed in this study were unfamiliar with these recommended

procedures that are now widely accepted and practiced throughout the world in

industries that strive to be ISO certified.  The ISO recommended practices should be

incorporated into academic curricula to better prepare students for careers in science and

industry.

• The notation used to express the uncertainty in measurements varies considerably among

experts, which was the reason for the introduction of the ISO guidelines cited above.

This inconsistency gives students confusing and conflicting instructional examples, and

can result in distinctly different conclusions when comparing two values with error

estimates, depending on the interpretation of the confidence level associated with each

uncertainty.

• Despite the numerous possible confidence levels implied by error bars, a clear majority

of both students and instructors use the “error bar overlap” criterion to decide if two

results agree with each other.  This finding emerged from the research (a result of the

grounded theory approach) and was not expected a priori.  The consequence of this

widely used criterion is that it results in a Type I error 16% to 32% of the time if the

error bars represent ± 1s.  This means that students will conclude that two results are

significantly different more often with this overlap criterion than they would using a t-

test with 5% significance level.

• Physics instructors reported that they learned to analyze measurement errors primarily

from studying or teaching undergraduate laboratory classes.   In fact, the undergraduate
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laboratory experience was cited twice as often as any other source for learning error

analysis.  This is strong motivation to ensure that students learn proper procedures for

expressing uncertainties early in their academic careers, rather than postponing

introduction of this subject until advanced undergraduate labs or graduate school.

5.4 Questions for Future Research

As with all scientific research, one interesting question naturally leads to other new

pathways that could be investigated.  Below are several questions that were raised but not

fully answered in this study.

• Why do students believe what they do about measurement errors?

While this question is one of the three original research questions, this study primarily

examined how students treat errors in measurement. Explanations for some of the student

difficulties have been presented here, but further examination is needed to better understand

the rationale behind the student practices.

• How effective is the graphical error bar representation at getting students to use the

uncertainty of their measurements to draw a valid conclusion about the agreement or

difference between two values?

Although the “overlap method” is commonly employed by physics students and

instructors, hardly anyone in this study used error bars to visually examine the overlap

between uncertainty ranges.  An Excel spreadsheet has been developed to easily allow
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students to enter measurement and uncertainty values and see these error bars (Appendix x).

This Data Comparison tool is now available to physics laboratory students at UNC, and the

effectiveness of this tool should be evaluated.

• How frequently do students find that their experimental result does not agree with

the theoretical value?

Based on the limited data obtained for this study, it appears that students often obtain

experimental uncertainties that underestimated, so that a Type I error occurs more frequently

than 32% of the time (as expected for an experimental value with a 68% confidence interval

compared to a theoretical value with negligible uncertainty).  If this perception is correct,

why does it occur and should it be corrected by having students use a 95% confidence

interval (or some other confidence interval) to estimate experimental uncertainties?

• How close together must two results be for students to decide they agree?

From this study, it was discovered that students often ignore the uncertainty of a

measurement when evaluating a result, and they use arbitrary criteria to decide if a result is

acceptable.  Learning more about the students’ evaluation criteria would be beneficial for

developing instructional strategies to correct this common occurrence.

• If research-based curricula is developed and implemented, how effective will it be in

helping students make the transition from novice to expert treatment of uncertainty?
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Now that we have a basic understanding of the challenges facing students’

understanding of measurement uncertainty, new curricula can be developed to address these

problem areas, as has been done with other subjects through research in physics education.

Implementation and evaluation of the curriculum is part of the continuing research -

curriculum development - instruction cycle.

5.5 Concluding Statement

The findings from this study reveal that students have difficulties with many of the

fundamental aspects related to measurements and the comparison of measured values.  The

most significant of these are the reluctance to specify a quantitative estimate of the

uncertainty in a measured value, the inability to identify the primary source of uncertainty in

an experimental result, and the failure to consider the uncertainty of a result when

comparing measured values. While these are important findings, they are secondary to more

fundamental problems that students have with making accurate measurements and analyzing

data.  Hopefully the research documented in this study will help educators improve

instruction of this subject that is fundamental to all types of scientific investigations.
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